Borel subgroups of Cremona groups

Pleiades Publishing Ltd - Tập 102 - Trang 60-67 - 2017
V. L. Popov1
1Steklov Mathematical Institute of Russian Academy of Sciences , Moscow Russia

Tóm tắt

We prove that the affine-triangular subgroups are Borel subgroups of Cremona groups.

Tài liệu tham khảo

J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis,” Astérisque 332, 75–100 (2010). J. Blanc, “Groupes de Cremona, connexitéet simplicité,” Ann. Sci. Éc. Norm. Supér. (4) 43 (2), 357–364 (2010). J. Blanc and J.-P. Furter, “Topologies and structures of the Cremona groups,” Ann. of Math. (2) 178 (3), 1173–1198 (2013). C. P. Ramanujam, “A note on automorphism groups of algebraic varieties,” Math. Ann. 156, 25–33 (1964). V. L. Popov, “On infinite dimensional algebraic transformation groups,” Transform. Groups 19 (2), 549–568 (2014). M. Demazure, “Topologies and structures of the Cremona groups,” Ann. Sci. École Norm. Supér. (4) 3, 507–588 (1970). V. L. Popov, “Some subgroups of the Cremona groups,” in Affine Algebraic Geometry (World Sci. Publ., Singapore, 2013), pp. 213–242. V. L. Popov, “Tori in the Cremona groups,” Izv. Ross. Akad. Nauk Ser. Mat. 77 (4), 103–134 (2013) [Russian Acad. Sci. Izv. Math. 77 (4), 742–771 (2013)]. J.-P. Furter and P.-M. Poloni, “On the maximality of the triangular subgroup”, arXiv: 1605.06344 (2016). B. L. van der Waerden, Algebra (Teil I, II, Die Grundlehren der mathematischen Wissenschaften, Bd. 34, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, 1960; Vols. 1 and 2, Frederick Ungar Publishing Co., New York, 1970; Nauka, Moscow, 1976). D. A. Suprunenko, Matrix Groups (Nauka, Moscow, 1972; AMS, Providence, RI, 1976). S. Akbari, R. Ebrahimian, H. Momenaee Kermani, and A. Salehi Golsefidy, “Maximal subgroups of GLn(D),” J. Algebra 259 (1), 201–225 (2003). A. Borel, Linear Algebraic Groups, in Grad. Texts in Math. (Springer-Verlag, New York, 1991), Vol. 126. J. E. Humphreys, Linear Algebraic Groups, in Grad. Texts in Math. (Springer-Verlag, New York, 1975), Vol. 21. T. A. Springer, Linear Algebrac Groups, in Progr. Math. (Birkhäuser Boston, Boston, MA, 1998), Vol. 9. Y. Berest, A. Eshmatov, and F. Eshmatov, “Dixmier groups and Borel subgroups,” Adv. Math. 286, 387–429 (2016). V. L. Popov, “On actions of G a on A n,” in Algebraic Groups, Lecture Notes in Math. (Springer-Verlag, Berlin, 1987), Vol. 1271, pp. 237–242.