Feedback control and hybrid projective synchronization of a fractional-order Newton–Leipnik system
Tài liệu tham khảo
Hartley, 1995, Chaos in a fractional order Chua’s system, IEEE Trans Circ Syst I, 42, 485, 10.1109/81.404062
Grigorenko, 2003, Chaotic dynamics of the fractional Lorenz system, Phys Rev Lett, 91, 10.1103/PhysRevLett.91.034101
Li, 2004, Chaos in Chen’s system with a fractional order, Chaos Solitons Fract, 22, 443, 10.1016/j.chaos.2004.02.013
Li, 2004, Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, 341, 55, 10.1016/j.physa.2004.04.113
Wang, 2007, Dynamic analysis of the fractional-order Liu system and its synchroniztion, Chaos, 17, 10.1063/1.2755420
Pecora, 1990, Synchronization in chaotic systems, Phys Rev Lett, 64, 821, 10.1103/PhysRevLett.64.821
Matouk, 2008, Dynamic analysis feedback control and synchronization of Liu dynamical system, Nonlinear Anal Theor Meth Appl, 69, 3213, 10.1016/j.na.2007.09.029
Arman, 2009, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun Nonlinear Sci Numer Simulat, 14, 863, 10.1016/j.cnsns.2007.11.011
Matignon D. Stability results for fractional differential equations with applications to control processing Computational Engineering in Systems and Application. In: Multiconference, IMACS, IEEE-SMC, Lille, France 1996; 2:963–968.
Deng, 2005, Chaos synchronization of the fractional Lü system, Physica A, 353, 61, 10.1016/j.physa.2005.01.021
Li, 2006, Chaos synchronization of the Chua system with a fractional order, Physica A, 360, 171, 10.1016/j.physa.2005.06.078
Li, 2007, The synchronization of three fractional differential systems, Chaos Solitons Fract, 32, 751, 10.1016/j.chaos.2005.11.020
Zhu, 2009, Chaos synchronization of the fractional-order Chen’s system, Chaos, Solitons Fract, 41, 2733, 10.1016/j.chaos.2008.10.005
Wang, 2009, Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun Nonlinear Sci Numer Simulat, 14, 3351, 10.1016/j.cnsns.2009.01.010
Wang, 2009, Chaos control of a fractional order modified coupled dynamos system, Nonlinear Anal, 71, 6126, 10.1016/j.na.2009.06.065
Sara, 2010, Control of a fractional-order economical system via sliding mode, Physica A, 389, 2434, 10.1016/j.physa.2010.02.025
Matouk, 2011, Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit, Commun Nonlinear Sci Numer Simulat, 16, 975, 10.1016/j.cnsns.2010.04.027
Leipnik, 1981, Double strange attractors in rigid body motion with linear feedback control, Phys Lett A, 86, 63, 10.1016/0375-9601(81)90165-1
Chen, 2004, A stable-manifold-based method for chaos control and synchronization, Chaos Solitons Fract, 20, 947, 10.1016/j.chaos.2003.09.021
Richter, 2002, Controlling chaotic system with multiple strange attractors, Phys Lett A, 300, 182, 10.1016/S0375-9601(02)00183-4
Wang, 2006, Bifurcation analysis and linear control of the Newton–Leipnik system, Chaos Solitons Fract, 27, 31, 10.1016/j.chaos.2005.04.009
Sheu, 2007, Chaos in a new system with a fractional order, Chaos Solitons Fract, 31, 1203, 10.1016/j.chaos.2005.10.073
Sheu, 2008, Chaos in the Newton–Leipnik system with fractional order, Chaos Solitons Fract, 36, 98, 10.1016/j.chaos.2006.06.013
Jia, 2008, Chaos control and synchronization of the Newton–Leipnik chaotic system, Chaos Solitons Fract, 35, 814, 10.1016/j.chaos.2006.05.069
Caputo, 1967, Linear models of dissipation whose Q is almost frequency independent, Geophys J Roy Astron Soc, 13, 529, 10.1111/j.1365-246X.1967.tb02303.x
Ahmed, 2006, On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys Let A, 358, 1, 10.1016/j.physleta.2006.04.087
Ahmed, 2007, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models, J Math Anal Appl, 325, 542, 10.1016/j.jmaa.2006.01.087
Diethelm, 1997, An algorithm for the numerical solution of differential equations of fractional order, Electron Trans Numer Anal, 5, 1
Diethelm, 2002, Analysis of fraction differential equations, J Math Anal Appl, 265, 229, 10.1006/jmaa.2000.7194
Diethelm, 2002, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, 29, 3, 10.1023/A:1016592219341
Diethelm, 1999, The FracPECE subroutine for the numerical solution of differential equations of fractional order, 57
Chang, 2010, Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems, Nonlinear Dyn, 10.1007/s11071-010-9767-6
Tavazoei, 2007, A necessary condition for double scroll attractor existence in fractional-order systems, Phys. Lett. A, 367, 102, 10.1016/j.physleta.2007.05.081
Tavazoei, 2008, Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 2628, 10.1016/j.physd.2008.03.037
Li, 2009, Mittag–Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 1965, 10.1016/j.automatica.2009.04.003
Baleanu, 2010, Mittag–Leffler stability theorem for fractional nonlinear systems with delay, Abstr Appl Anal, 10.1155/2010/124812
Baleanu, 2010, Razumikhin Stability Theorem for Fractional Systems with Delay, Abstr Appl Anal, 10.1155/2010/124812