Feedback control and hybrid projective synchronization of a fractional-order Newton–Leipnik system

Kun Zhang1, Hua Wang1, Hui Fang2
1Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Yunnan 650093, China
2Center for Nonlinear Science Studies, Kunming University of Science and Technology, Yunnan 650093, China

Tài liệu tham khảo

Hartley, 1995, Chaos in a fractional order Chua’s system, IEEE Trans Circ Syst I, 42, 485, 10.1109/81.404062 Grigorenko, 2003, Chaotic dynamics of the fractional Lorenz system, Phys Rev Lett, 91, 10.1103/PhysRevLett.91.034101 Li, 2004, Chaos in Chen’s system with a fractional order, Chaos Solitons Fract, 22, 443, 10.1016/j.chaos.2004.02.013 Li, 2004, Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, 341, 55, 10.1016/j.physa.2004.04.113 Wang, 2007, Dynamic analysis of the fractional-order Liu system and its synchroniztion, Chaos, 17, 10.1063/1.2755420 Pecora, 1990, Synchronization in chaotic systems, Phys Rev Lett, 64, 821, 10.1103/PhysRevLett.64.821 Matouk, 2008, Dynamic analysis feedback control and synchronization of Liu dynamical system, Nonlinear Anal Theor Meth Appl, 69, 3213, 10.1016/j.na.2007.09.029 Arman, 2009, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun Nonlinear Sci Numer Simulat, 14, 863, 10.1016/j.cnsns.2007.11.011 Matignon D. Stability results for fractional differential equations with applications to control processing Computational Engineering in Systems and Application. In: Multiconference, IMACS, IEEE-SMC, Lille, France 1996; 2:963–968. Deng, 2005, Chaos synchronization of the fractional Lü system, Physica A, 353, 61, 10.1016/j.physa.2005.01.021 Li, 2006, Chaos synchronization of the Chua system with a fractional order, Physica A, 360, 171, 10.1016/j.physa.2005.06.078 Li, 2007, The synchronization of three fractional differential systems, Chaos Solitons Fract, 32, 751, 10.1016/j.chaos.2005.11.020 Zhu, 2009, Chaos synchronization of the fractional-order Chen’s system, Chaos, Solitons Fract, 41, 2733, 10.1016/j.chaos.2008.10.005 Wang, 2009, Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun Nonlinear Sci Numer Simulat, 14, 3351, 10.1016/j.cnsns.2009.01.010 Wang, 2009, Chaos control of a fractional order modified coupled dynamos system, Nonlinear Anal, 71, 6126, 10.1016/j.na.2009.06.065 Sara, 2010, Control of a fractional-order economical system via sliding mode, Physica A, 389, 2434, 10.1016/j.physa.2010.02.025 Matouk, 2011, Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit, Commun Nonlinear Sci Numer Simulat, 16, 975, 10.1016/j.cnsns.2010.04.027 Leipnik, 1981, Double strange attractors in rigid body motion with linear feedback control, Phys Lett A, 86, 63, 10.1016/0375-9601(81)90165-1 Chen, 2004, A stable-manifold-based method for chaos control and synchronization, Chaos Solitons Fract, 20, 947, 10.1016/j.chaos.2003.09.021 Richter, 2002, Controlling chaotic system with multiple strange attractors, Phys Lett A, 300, 182, 10.1016/S0375-9601(02)00183-4 Wang, 2006, Bifurcation analysis and linear control of the Newton–Leipnik system, Chaos Solitons Fract, 27, 31, 10.1016/j.chaos.2005.04.009 Sheu, 2007, Chaos in a new system with a fractional order, Chaos Solitons Fract, 31, 1203, 10.1016/j.chaos.2005.10.073 Sheu, 2008, Chaos in the Newton–Leipnik system with fractional order, Chaos Solitons Fract, 36, 98, 10.1016/j.chaos.2006.06.013 Jia, 2008, Chaos control and synchronization of the Newton–Leipnik chaotic system, Chaos Solitons Fract, 35, 814, 10.1016/j.chaos.2006.05.069 Caputo, 1967, Linear models of dissipation whose Q is almost frequency independent, Geophys J Roy Astron Soc, 13, 529, 10.1111/j.1365-246X.1967.tb02303.x Ahmed, 2006, On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys Let A, 358, 1, 10.1016/j.physleta.2006.04.087 Ahmed, 2007, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models, J Math Anal Appl, 325, 542, 10.1016/j.jmaa.2006.01.087 Diethelm, 1997, An algorithm for the numerical solution of differential equations of fractional order, Electron Trans Numer Anal, 5, 1 Diethelm, 2002, Analysis of fraction differential equations, J Math Anal Appl, 265, 229, 10.1006/jmaa.2000.7194 Diethelm, 2002, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, 29, 3, 10.1023/A:1016592219341 Diethelm, 1999, The FracPECE subroutine for the numerical solution of differential equations of fractional order, 57 Chang, 2010, Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems, Nonlinear Dyn, 10.1007/s11071-010-9767-6 Tavazoei, 2007, A necessary condition for double scroll attractor existence in fractional-order systems, Phys. Lett. A, 367, 102, 10.1016/j.physleta.2007.05.081 Tavazoei, 2008, Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 2628, 10.1016/j.physd.2008.03.037 Li, 2009, Mittag–Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 1965, 10.1016/j.automatica.2009.04.003 Baleanu, 2010, Mittag–Leffler stability theorem for fractional nonlinear systems with delay, Abstr Appl Anal, 10.1155/2010/124812 Baleanu, 2010, Razumikhin Stability Theorem for Fractional Systems with Delay, Abstr Appl Anal, 10.1155/2010/124812