Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals
Tài liệu tham khảo
UNFCCC, 2011, Decision 1/CP.17 in Report of the Conference of the Parties on its Seventeenth Session
Riahi, 2012, Chapter 17 — energy pathways for sustainable development, 1203
Wise, 2009, Implications of limiting CO2 concentrations for land use and energy, Science, 324, 1183, 10.1126/science.1168475
Clarke, 2009, International climate policy architectures: overview of the EMF 22 international scenarios, Energy Econ., 31, S64, 10.1016/j.eneco.2009.10.013
Edenhofer, 2010, The economics of low stabilization: model comparison of mitigation strategies and costs, Energy J., 31, 11, 10.5547/ISSN0195-6574-EJ-Vol31-NoSI-2
Luderer, 2012, The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison, Clim. Chang., 114, 9, 10.1007/s10584-011-0105-x
UNFCCC, 2010, Decision 1/CP.16 the Cancun Agreement
UNEP, 2012
Rogelj, 2010, Analysis of the Copenhagen Accord pledges and its global climatic impacts — a snapshot of dissonant ambitions, Environ. Res. Lett., 5, 10.1088/1748-9326/5/3/034013
den Elzen, 2011, The emissions gap between the Copenhagen pledges and the 2°C climate goal: options for closing and risks that could widen the gap, Glob. Environ. Chang., 21, 733, 10.1016/j.gloenvcha.2011.01.006
UNEP, 2011
Höhne, 2012, National GHG emissions reduction pledges and 2°C: comparison of studies, Clim. Pol., 12, 356, 10.1080/14693062.2011.637818
Rogelj, 2011, Emission pathways consistent with a 2°C global temperature limit, Nat. Clim. Chang., 1, 413, 10.1038/nclimate1258
van Vliet, 2012, Copenhagen Accord pledges imply higher costs for staying below 2°C warming: a letter, Clim. Chang., 113, 551, 10.1007/s10584-012-0458-9
Rogelj, 2012, 2020 emissions levels required to limit warming to below 2°C, Nat. Clim. Chang., 3, 405, 10.1038/nclimate1758
Luderer, 2013, Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environ. Res. Lett., 8, 10.1088/1748-9326/8/3/034033
Kriegler, 2015, Making or breaking climate targets: the AMPERE study on staged accession scenarios for climate policy, Technol. Forecast. Soc. Chang., 90, 24, 10.1016/j.techfore.2013.09.021
Eom, 2015, The impact of near-term climate policy choices on technology and emission transition pathways, Technol. Forecast. Soc. Chang., 90, 73, 10.1016/j.techfore.2013.09.017
Bibas, 2015, Energy efficiency policies and the timing of action: an assessment of climate mitigation costs, Technol. Forecast. Soc. Chang., 90, 137, 10.1016/j.techfore.2014.05.003
Criqui, 2015, Mitigation strategies and energy technology learning: assessment with the POLES model, Technol. Forecast. Soc. Chang., 90, 119, 10.1016/j.techfore.2014.05.005
Johnson, 2015, Stranded on a low-carbon planet: implications of climate policy for the phase-out of coal-based power plants, Technol. Forecast. Soc. Chang., 90, 89, 10.1016/j.techfore.2014.02.028
Sano, 2015, Assessments of GHG emission reduction scenarios of different levels and different short-term pledges through macro and sectoral decomposition analyses, Technol. Forecast. Soc. Chang., 90, 153, 10.1016/j.techfore.2013.11.002
Meinshausen, 2009, Greenhouse-gas emission targets for limiting global warming to 2°C, Nature, 458, 1158, 10.1038/nature08017
Allen, 2009, Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163, 10.1038/nature08019
Zickfeld, 2009, Setting cumulative emissions targets to reduce the risk of dangerous climate change, Proc. Natl. Acad. Sci. U. S. A., 106, 16129, 10.1073/pnas.0805800106
Matthews, 2009, The proportionality of global warming to cumulative carbon emissions, Nature, 459, 829, 10.1038/nature08047
Kriegler, 2013, What does the 2C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios, Clim. Chang. Econ., 10.1142/S2010007813400083
van der Zwaan, 2013, A cross-model comparison of global long-term technology diffusion under a 2°C climate change control target, Clim. Chang. Econ., 10.1142/S2010007813400137
McCollum, 2013, Energy investments under climate policy: a comparison of global models, Clim. Chang. Econ., 10.1142/S2010007813400101
Tavoni, 2013, The distribution of the major economies' effort in the Durban platform scenarios, Clim. Chang. Econ., 10.1142/S2010007813400095
Krey, 2009, Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets-greenhouse gas mitigation scenarios for the 21st century, Energy Econ., 31, S94, 10.1016/j.eneco.2009.07.001
Rogelj, 2013, Probabilistic cost estimates for climate change mitigation, Nature, 493, 79, 10.1038/nature11787
Tavoni, 2012, The value of technology and of its evolution towards a low carbon economy, Clim. Chang., 114, 39, 10.1007/s10584-011-0294-3
Azar, 2010, The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS), Clim. Chang., 100, 195, 10.1007/s10584-010-9832-7
Edenhofer, 2010, The economics of low stabilization: model comparison of mitigation strategies and costs, Energy J., 21, 11
von Hippel, 2012, Chapter 14 — nuclear energy, 1069
Scott, 2013, Last chance for carbon capture and storage, Nat. Clim. Chang., 3, 105, 10.1038/nclimate1695
IPCC, 2011, Special Report on Renewable Energy Sources and Climate Change Mitigation
Sullivan, 2013, Impacts of considering electric sector variability and reliability in the MESSAGE model, Energy Strategy Rev., 1, 157, 10.1016/j.esr.2013.01.001
van Vuuren, 2010, Bio-energy use and low stabilization scenarios, Energy J., 31, 193
Kriegler, 2013, The role of technology for achieving climate policy objectives: overview of the EMF27 study on global technology and climate policy strategies, Clim. Chang.
den Elzen, 2012
Fisher, 2007, Chapter 3: issues related to mitigation in the long-term context, 169
Meinshausen, 2011, The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Chang., 109, 213, 10.1007/s10584-011-0156-z
van Vuuren, 2011, The relationship between short-term emissions and long-term concentration targets, Clim. Chang., 104, 793, 10.1007/s10584-010-0004-6
Schaeffer, 2015, Mid- and long-term climate projections for fragmented and delayed-action scenarios, Technol. Forecast. Soc. Chang., 90, 257, 10.1016/j.techfore.2013.09.013
Leimbach, 2013, Future growth patterns of world regions — divergence or convergence?, Glob. Environ. Chang.
UNDESA, 2011
Krewitt, 2009, Energy [R]evolution 2008—a sustainable world energy perspective, Energy Policy, 37, 5764, 10.1016/j.enpol.2009.08.042
Nakicenovic, 2006, Assessment of emissions scenarios revisited, Environ. Econ. Policy Stud., 7, 137, 10.1007/BF03353998
Meinshausen, 2011, Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 — part 1: model description and calibration, Atmos. Chem. Phys., 11, 1417, 10.5194/acp-11-1417-2011
Meinshausen, 2011, Emulating atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 — part 2: applications, Atmos. Chem. Phys., 11, 1457, 10.5194/acp-11-1457-2011
Friedlingstein, 2006, Climate-carbon cycle feedback analysis: results from the C 4MIP model intercomparison, J. Clim., 19, 3337, 10.1175/JCLI3800.1
Meehl, 2005, Overview of the coupled model intercomparison project, Bull. Am. Meteorol. Soc., 86, 89, 10.1175/BAMS-86-1-89
Rogelj, 2012, Global warming under old and new scenarios using IPCC climate sensitivity range estimates, Nat. Clim. Chang., 2, 248, 10.1038/nclimate1385
Brohan, 2006, Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850, J. Geophys. Res. D: Atmos., 111, 10.1029/2005JD006548
Domingues, 2008, Improved estimates of upper-ocean warming and multi-decadal sea-level rise, Nature, 453, 1090, 10.1038/nature07080
Kriegler, 2015, Diagnostic indicators for integrated assessment models of climate policies, Technol. Forecast. Soc. Chang., 90, 45, 10.1016/j.techfore.2013.09.020
Tavoni, 2013, Modeling meets science and technology: an introduction to a special issue on negative emissions, Clim. Chang., 118, 1, 10.1007/s10584-013-0757-9
Kriegler, 2013, Is atmospheric carbon dioxide removal a game changer for climate change mitigation?, Clim. Chang., 118, 45, 10.1007/s10584-012-0681-4
Vuuren, 2013, The role of negative CO2 emissions for reaching 2°C—insights from integrated assessment modelling, Clim. Chang., 118, 15, 10.1007/s10584-012-0680-5
Ha-Duong, 1997, Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement, Nature, 390, 270, 10.1038/36825
Grubb, 1995, The economics of changing course: implications of adaptability and inertia for optimal climate policy, Energy Policy, 23, 417, 10.1016/0301-4215(95)90167-6
Arthur, 1989, Competing technologies, increasing returns, and lock-in by historical events, Econ. J., 99, 116, 10.2307/2234208
Roehrl, 2000, Technology dynamics and greenhouse gas emissions mitigation: a cost assessment, Technol. Forecast. Soc. Chang., 63, 231, 10.1016/S0040-1625(99)00112-2
Bertram, 2015, Path dependency and carbon lock-in associated with weak near-term climate policies, Technol. Forecast. Soc. Chang., 90, 62, 10.1016/j.techfore.2013.10.001
Boden, 2012, Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2008
van der Zwaan, 2013, The role of nuclear power in mitigating emissions from electricity generation, Energy Strategy Rev., 1, 296, 10.1016/j.esr.2012.12.008
United Nations, 2011, Sustainable energy for all
United Nations, 2012, Sustainable energy for all: a framework for action
Bosetti, 2012, Politically feasible emissions targets to attain 460ppm CO2 concentrations, Rev. Environ. Econ. Policy, 6, 86, 10.1093/reep/rer022
Tavoni, 2011, Nuclear versus coal plus CCS: a comparison of two competitive base-load climate control options, Environ. Model. Assess., 16, 431, 10.1007/s10666-011-9259-1
Krey, 2013, Getting from here to there — energy transformation pathways in the EMF27 scenarios, Clim. Chang.
Azar, 2013, Meeting global temperature targets—the role of bioenergy with carbon capture and storage, Environ. Res. Lett., 8, 10.1088/1748-9326/8/3/034004
Bauer, 2012, Economics of nuclear power and climate change mitigation policies, Proc. Natl. Acad. Sci. U. S. A., 109, 16805, 10.1073/pnas.1201264109
Lamarque, 2010, Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017, 10.5194/acp-10-7017-2010
Granier, 2011, Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period, Clim. Chang., 109, 163, 10.1007/s10584-011-0154-1