Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals

Elsevier BV - Tập 90 - Trang 8-23 - 2015
Keywan Riahi1,2, Elmar Kriegler3, Nils Johnson1, Christoph Bertram3, Michel den Elzen4, Jiyong Eom5, Michiel Schaeffer6, Jae Edmonds5, Morna Isaac4, Volker Krey1, Thomas Longden7, Gunnar Luderer3, Aurélie Méjean8, David L. McCollum1, Silvana Mima9, Hal Turton, Detlef P. van Vuuren4,10, Kenichi Wada11, Valentina Bosetti7,12, Pantelis Capros13
1International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
2Graz University of Technology, Graz, Austria
3Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
4PBL Netherlands Environmental Assessment Agency, Utrecht, The Netherlands
5Pacific Northwest National Laboratory's Joint Global Change Research Institute, College Park, Maryland, USA
6Climate Analytics, Berlin, Germany
7Fondazione Eni Enrico Mattei (FEEM), Milan, Italy
8Centre International de Recherche sur l'Environnement et le Développement (CIRED), Nogent-sur-Marne, France
9Institute of Economics and Politics of Energy (IEPE), Grenoble, France
10Utrecht University, Department of Geosciences, Utrecht, The Netherlands
11Research Institute of Innovative Technology for the Earth (RITE), Kyoto, Japan
12Bocconi University, Milan, Italy
13National Technical University of Athens (NTUA), Athens, Greece

Tài liệu tham khảo

UNFCCC, 2011, Decision 1/CP.17 in Report of the Conference of the Parties on its Seventeenth Session Riahi, 2012, Chapter 17 — energy pathways for sustainable development, 1203 Wise, 2009, Implications of limiting CO2 concentrations for land use and energy, Science, 324, 1183, 10.1126/science.1168475 Clarke, 2009, International climate policy architectures: overview of the EMF 22 international scenarios, Energy Econ., 31, S64, 10.1016/j.eneco.2009.10.013 Edenhofer, 2010, The economics of low stabilization: model comparison of mitigation strategies and costs, Energy J., 31, 11, 10.5547/ISSN0195-6574-EJ-Vol31-NoSI-2 Luderer, 2012, The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison, Clim. Chang., 114, 9, 10.1007/s10584-011-0105-x UNFCCC, 2010, Decision 1/CP.16 the Cancun Agreement UNEP, 2012 Rogelj, 2010, Analysis of the Copenhagen Accord pledges and its global climatic impacts — a snapshot of dissonant ambitions, Environ. Res. Lett., 5, 10.1088/1748-9326/5/3/034013 den Elzen, 2011, The emissions gap between the Copenhagen pledges and the 2°C climate goal: options for closing and risks that could widen the gap, Glob. Environ. Chang., 21, 733, 10.1016/j.gloenvcha.2011.01.006 UNEP, 2011 Höhne, 2012, National GHG emissions reduction pledges and 2°C: comparison of studies, Clim. Pol., 12, 356, 10.1080/14693062.2011.637818 Rogelj, 2011, Emission pathways consistent with a 2°C global temperature limit, Nat. Clim. Chang., 1, 413, 10.1038/nclimate1258 van Vliet, 2012, Copenhagen Accord pledges imply higher costs for staying below 2°C warming: a letter, Clim. Chang., 113, 551, 10.1007/s10584-012-0458-9 Rogelj, 2012, 2020 emissions levels required to limit warming to below 2°C, Nat. Clim. Chang., 3, 405, 10.1038/nclimate1758 Luderer, 2013, Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environ. Res. Lett., 8, 10.1088/1748-9326/8/3/034033 Kriegler, 2015, Making or breaking climate targets: the AMPERE study on staged accession scenarios for climate policy, Technol. Forecast. Soc. Chang., 90, 24, 10.1016/j.techfore.2013.09.021 Eom, 2015, The impact of near-term climate policy choices on technology and emission transition pathways, Technol. Forecast. Soc. Chang., 90, 73, 10.1016/j.techfore.2013.09.017 Bibas, 2015, Energy efficiency policies and the timing of action: an assessment of climate mitigation costs, Technol. Forecast. Soc. Chang., 90, 137, 10.1016/j.techfore.2014.05.003 Criqui, 2015, Mitigation strategies and energy technology learning: assessment with the POLES model, Technol. Forecast. Soc. Chang., 90, 119, 10.1016/j.techfore.2014.05.005 Johnson, 2015, Stranded on a low-carbon planet: implications of climate policy for the phase-out of coal-based power plants, Technol. Forecast. Soc. Chang., 90, 89, 10.1016/j.techfore.2014.02.028 Sano, 2015, Assessments of GHG emission reduction scenarios of different levels and different short-term pledges through macro and sectoral decomposition analyses, Technol. Forecast. Soc. Chang., 90, 153, 10.1016/j.techfore.2013.11.002 Meinshausen, 2009, Greenhouse-gas emission targets for limiting global warming to 2°C, Nature, 458, 1158, 10.1038/nature08017 Allen, 2009, Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163, 10.1038/nature08019 Zickfeld, 2009, Setting cumulative emissions targets to reduce the risk of dangerous climate change, Proc. Natl. Acad. Sci. U. S. A., 106, 16129, 10.1073/pnas.0805800106 Matthews, 2009, The proportionality of global warming to cumulative carbon emissions, Nature, 459, 829, 10.1038/nature08047 Kriegler, 2013, What does the 2C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios, Clim. Chang. Econ., 10.1142/S2010007813400083 van der Zwaan, 2013, A cross-model comparison of global long-term technology diffusion under a 2°C climate change control target, Clim. Chang. Econ., 10.1142/S2010007813400137 McCollum, 2013, Energy investments under climate policy: a comparison of global models, Clim. Chang. Econ., 10.1142/S2010007813400101 Tavoni, 2013, The distribution of the major economies' effort in the Durban platform scenarios, Clim. Chang. Econ., 10.1142/S2010007813400095 Krey, 2009, Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets-greenhouse gas mitigation scenarios for the 21st century, Energy Econ., 31, S94, 10.1016/j.eneco.2009.07.001 Rogelj, 2013, Probabilistic cost estimates for climate change mitigation, Nature, 493, 79, 10.1038/nature11787 Tavoni, 2012, The value of technology and of its evolution towards a low carbon economy, Clim. Chang., 114, 39, 10.1007/s10584-011-0294-3 Azar, 2010, The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS), Clim. Chang., 100, 195, 10.1007/s10584-010-9832-7 Edenhofer, 2010, The economics of low stabilization: model comparison of mitigation strategies and costs, Energy J., 21, 11 von Hippel, 2012, Chapter 14 — nuclear energy, 1069 Scott, 2013, Last chance for carbon capture and storage, Nat. Clim. Chang., 3, 105, 10.1038/nclimate1695 IPCC, 2011, Special Report on Renewable Energy Sources and Climate Change Mitigation Sullivan, 2013, Impacts of considering electric sector variability and reliability in the MESSAGE model, Energy Strategy Rev., 1, 157, 10.1016/j.esr.2013.01.001 van Vuuren, 2010, Bio-energy use and low stabilization scenarios, Energy J., 31, 193 Kriegler, 2013, The role of technology for achieving climate policy objectives: overview of the EMF27 study on global technology and climate policy strategies, Clim. Chang. den Elzen, 2012 Fisher, 2007, Chapter 3: issues related to mitigation in the long-term context, 169 Meinshausen, 2011, The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Chang., 109, 213, 10.1007/s10584-011-0156-z van Vuuren, 2011, The relationship between short-term emissions and long-term concentration targets, Clim. Chang., 104, 793, 10.1007/s10584-010-0004-6 Schaeffer, 2015, Mid- and long-term climate projections for fragmented and delayed-action scenarios, Technol. Forecast. Soc. Chang., 90, 257, 10.1016/j.techfore.2013.09.013 Leimbach, 2013, Future growth patterns of world regions — divergence or convergence?, Glob. Environ. Chang. UNDESA, 2011 Krewitt, 2009, Energy [R]evolution 2008—a sustainable world energy perspective, Energy Policy, 37, 5764, 10.1016/j.enpol.2009.08.042 Nakicenovic, 2006, Assessment of emissions scenarios revisited, Environ. Econ. Policy Stud., 7, 137, 10.1007/BF03353998 Meinshausen, 2011, Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 — part 1: model description and calibration, Atmos. Chem. Phys., 11, 1417, 10.5194/acp-11-1417-2011 Meinshausen, 2011, Emulating atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 — part 2: applications, Atmos. Chem. Phys., 11, 1457, 10.5194/acp-11-1457-2011 Friedlingstein, 2006, Climate-carbon cycle feedback analysis: results from the C 4MIP model intercomparison, J. Clim., 19, 3337, 10.1175/JCLI3800.1 Meehl, 2005, Overview of the coupled model intercomparison project, Bull. Am. Meteorol. Soc., 86, 89, 10.1175/BAMS-86-1-89 Rogelj, 2012, Global warming under old and new scenarios using IPCC climate sensitivity range estimates, Nat. Clim. Chang., 2, 248, 10.1038/nclimate1385 Brohan, 2006, Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850, J. Geophys. Res. D: Atmos., 111, 10.1029/2005JD006548 Domingues, 2008, Improved estimates of upper-ocean warming and multi-decadal sea-level rise, Nature, 453, 1090, 10.1038/nature07080 Kriegler, 2015, Diagnostic indicators for integrated assessment models of climate policies, Technol. Forecast. Soc. Chang., 90, 45, 10.1016/j.techfore.2013.09.020 Tavoni, 2013, Modeling meets science and technology: an introduction to a special issue on negative emissions, Clim. Chang., 118, 1, 10.1007/s10584-013-0757-9 Kriegler, 2013, Is atmospheric carbon dioxide removal a game changer for climate change mitigation?, Clim. Chang., 118, 45, 10.1007/s10584-012-0681-4 Vuuren, 2013, The role of negative CO2 emissions for reaching 2°C—insights from integrated assessment modelling, Clim. Chang., 118, 15, 10.1007/s10584-012-0680-5 Ha-Duong, 1997, Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement, Nature, 390, 270, 10.1038/36825 Grubb, 1995, The economics of changing course: implications of adaptability and inertia for optimal climate policy, Energy Policy, 23, 417, 10.1016/0301-4215(95)90167-6 Arthur, 1989, Competing technologies, increasing returns, and lock-in by historical events, Econ. J., 99, 116, 10.2307/2234208 Roehrl, 2000, Technology dynamics and greenhouse gas emissions mitigation: a cost assessment, Technol. Forecast. Soc. Chang., 63, 231, 10.1016/S0040-1625(99)00112-2 Bertram, 2015, Path dependency and carbon lock-in associated with weak near-term climate policies, Technol. Forecast. Soc. Chang., 90, 62, 10.1016/j.techfore.2013.10.001 Boden, 2012, Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2008 van der Zwaan, 2013, The role of nuclear power in mitigating emissions from electricity generation, Energy Strategy Rev., 1, 296, 10.1016/j.esr.2012.12.008 United Nations, 2011, Sustainable energy for all United Nations, 2012, Sustainable energy for all: a framework for action Bosetti, 2012, Politically feasible emissions targets to attain 460ppm CO2 concentrations, Rev. Environ. Econ. Policy, 6, 86, 10.1093/reep/rer022 Tavoni, 2011, Nuclear versus coal plus CCS: a comparison of two competitive base-load climate control options, Environ. Model. Assess., 16, 431, 10.1007/s10666-011-9259-1 Krey, 2013, Getting from here to there — energy transformation pathways in the EMF27 scenarios, Clim. Chang. Azar, 2013, Meeting global temperature targets—the role of bioenergy with carbon capture and storage, Environ. Res. Lett., 8, 10.1088/1748-9326/8/3/034004 Bauer, 2012, Economics of nuclear power and climate change mitigation policies, Proc. Natl. Acad. Sci. U. S. A., 109, 16805, 10.1073/pnas.1201264109 Lamarque, 2010, Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017, 10.5194/acp-10-7017-2010 Granier, 2011, Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period, Clim. Chang., 109, 163, 10.1007/s10584-011-0154-1