Recent Advances in ZIF‐Derived Atomic Metal–N–C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities

Small - Tập 18 Số 14 - 2022
Gao Chen1, Shengdong Mu1, Rui Yan1, Fan Chen1, Tian Ma2, Sujiao Cao2, Shuang Li1,3, Lang Ma2,4, Yinghan Wang1, Chong Cheng1
1College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
2Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
3Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
4National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, 610041 China

Tóm tắt

Abstract

Exploring highly active, stable electrocatalysts with earth‐abundant metal centers for the oxygen reduction reaction (ORR) is essential for sustainable energy conversion. Due to the high cost and scarcity of platinum, it is a general trend to develop metal–N–C (M–N–C) electrocatalysts, especially those prepared from the zeolite imidazolate framework (ZIF) to replace/minimize usage of noble metals in ORR electrocatalysis for their amazingly high catalytic efficiency, great stability, and readily‐tuned electronic structure. In this review, the most pivotal advances in mechanisms leading to declined catalytic performance, synthetic strategies, and design principles in engineering ZIF‐derived M–N–C for efficient ORR catalysis, are presented. Notably, this review focuses on how to improve intrinsic ORR activity, such as M–Nx–Cy coordination structures, doping metal‐free heteroatoms in M–N–C, dual/multi‐metal sites, hydrogen passivation, and edge‐hosted M–Nx. Meanwhile, how to increase active sites density, including formation of M–N complex, spatial confinement effects, and porous structure design, are discussed. Thereafter, challenges and future perspectives of M–N–C are also proposed. The authors believe this instructive review will provide experimental and theoretical guidance for designing future, highly active ORR electrocatalysts, and facilitate their applications in diverse ORR‐related energy technologies.

Từ khóa


Tài liệu tham khảo

10.1016/j.nanoen.2016.11.033

10.1039/c2sc20657a

10.1002/anie.201400358

10.1002/adfm.201503613

10.1002/adma.201500727

10.1002/inf2.12243

10.1002/adma.202008784

10.1002/adma.201500262

10.1021/acscatal.5b00530

10.1021/jacs.6b09470

10.1021/ja505777v

10.1039/C8EE02694G

10.1038/s41929-019-0237-3

10.1002/adma.201706758

10.1021/acs.nanolett.8b00978

10.1039/C7CC03558F

10.1002/adfm.201704638

10.1038/s41563-021-01006-2

10.1002/anie.201909312

10.1038/s41929-020-00546-1

10.1038/s41929-018-0164-8

10.1039/C3TA14153E

10.1002/adma.202006042

10.1002/adfm.201807419

10.1002/adma.201700707

10.1002/aenm.201801226

10.1002/anie.201704356

10.1021/jp900838x

10.1126/sciadv.aar7180

10.1039/C9TA12099H

10.1007/s42765-021-00072-0

10.1002/sus2.15

10.1039/c3ta12142a

10.1021/acs.chemrev.5b00462

10.1021/jacs.7b06514

10.1002/anie.201702473

10.1038/s41563-021-01030-2

10.1021/jacs.9b05576

10.1002/adma.201802669

10.1002/smll.202102125

10.1021/acsami.1c10510

10.1002/smll.202101001

10.1088/1361-6528/abaf84

10.1039/C7EE02302B

10.1002/anie.202108937

10.1002/smll.202100735

10.1002/smll.202007264

10.1002/adma.201804504

10.1021/jacs.7b10385

10.1039/C8CC00988K

10.1002/adfm.201802596

10.1021/acsami.6b02078

10.1021/acsami.0c03415

10.1002/smtd.201900827

10.1038/s41563-020-0717-5

10.1002/anie.202108599

10.1021/acscatal.0c05503

10.1038/s41467-020-14565-w

10.1002/adma.202003577

10.1016/j.jpowsour.2019.227660

10.1038/s41929-018-0146-x

10.1021/jacs.8b13543

10.1002/anie.202010013

10.1016/j.apsusc.2020.148017

10.1088/2515-7639/abebe8

10.1016/j.nanoen.2016.05.025

10.1021/acssuschemeng.0c04094

10.1002/anie.201906289

10.1016/j.ceramint.2018.01.243

10.1002/smll.202102903

10.1002/adfm.202006188

10.1002/anie.201709597

Sgarbi R., 2021, J. Phys. Chem. B, 25, 45

10.1149/2.1311614jes

10.1149/1.2904768

10.1021/jp2042526

10.1016/j.nanoen.2016.02.038

10.1039/C6EE03005J

10.1016/j.mtener.2018.05.011

10.1039/c0cy00053a

10.1016/j.jpowsour.2015.03.047

10.1021/acscatal.8b00390

10.1007/s10562-016-1800-z

10.1002/anie.201504903

10.1002/adma.201807615

10.1016/j.electacta.2013.03.183

10.1002/anie.201204958

10.1007/s40820-020-00579-y

10.1039/C4CP02882A

10.1021/jp030349j

10.1016/j.jechem.2020.06.046

10.1039/C6TA01062H

10.1038/nmat4367

10.1002/anie.201405314

10.1039/C8EE01855C

10.1039/C9CS00903E

10.1002/aenm.202100219

10.1002/er.6420

10.1021/acsami.0c01666

10.1002/aenm.201902084

10.1039/C9EE01722D

10.1016/j.carbon.2018.11.013

10.1039/C7TA02381B

10.1038/ncomms9618

10.1021/ar400011z

10.1039/C9EE00877B

10.1039/C9GC02266J

10.1021/acs.jpcc.7b00913

10.1021/acs.jpcc.7b02455

10.1021/acsami.7b13095

10.1039/C7CC05476A

10.1039/c3ee43463j

10.1039/C6TA00768F

10.1021/jacs.1c03135

10.1002/anie.202003842

10.1038/s41467-018-07850-2

10.1002/anie.201411125

10.1039/C7TA05222G

10.1021/jacs.1c01525

10.1038/srep09286

10.1002/anie.201710852

10.1002/celc.202001485

10.1002/adma.202103600

10.1038/nnano.2012.72

10.1021/jp5038365

10.1126/science.aad0832

10.1021/acsenergylett.8b00144

10.1002/adma.201606534

10.1007/s41918-019-00030-w

10.1002/anie.202109530

10.1021/jacs.6b13100

10.1016/j.nanoen.2018.03.059

10.1021/jacs.8b11129

10.1021/acscatal.5b02721

10.1021/cs401257j