Assessing harmfulness and vulnerability in global bipartite networks of terrorist-target relationships

Social Networks - Tập 72 - Trang 22-34 - 2023
Alessandro Spelta1, Nicoló Pecora2, Paolo Pagnottoni1
1Department of Economics and Management, University of Pavia, Via San Felice 5, 27100 Pavia, Italy
2Department of Economics and Social Sciences, Catholic University, Via Emilia Parmense 84, 29122 Piacenza, Italy

Tài liệu tham khảo

Abadie, 2006, Poverty, political freedom, and the roots of terrorism, Amer. Econ. Rev., 96, 50, 10.1257/000282806777211847 Abadie, 2008, Terrorism and the world economy, Eur. Econ. Rev., 52, 1, 10.1016/j.euroecorev.2007.08.005 Aitkin, 2017, Statistical modelling of a terrorist network, J. R. Stat. Soc.: Ser. A (Stat. Soc.), 180, 751, 10.1111/rssa.12233 Aldasoro, 2022, The drivers of cyber risk, J. Financ. Stab., 60, 10.1016/j.jfs.2022.100989 Alshamsi, 2018, Optimal diversification strategies in the networks of related products and of related research areas, Nature Commun., 9, 1, 10.1038/s41467-018-03740-9 Alvarez-Rodriguez, 2021, Evolutionary dynamics of higher-order interactions in social networks, Nat. Hum. Behav., 5, 586, 10.1038/s41562-020-01024-1 Basu, 2021, Identifying individuals associated with organized criminal networks: a social network analysis, Social Networks, 64, 42, 10.1016/j.socnet.2020.07.009 Berzinji, 2012, Detecting key players in terrorist networks, 297 Blomberg, 2004, The macroeconomic consequences of terrorism, J. Monetary Econ., 51, 1007, 10.1016/j.jmoneco.2004.04.001 Bonacich, 2001, Eigenvector-like measures of centrality for asymmetric relations, Social Networks, 23, 191, 10.1016/S0378-8733(01)00038-7 Borgatti, 2006, Identifying sets of key players in a social network, Comput. Math. Org. Theor., 12, 21, 10.1007/s10588-006-7084-x Brin, 1998, The anatomy of a large-scale hypertextual web search engine, Comput. Netw. ISDN Syst., 30, 107, 10.1016/S0169-7552(98)00110-X Brodeur, 2018, The effect of terrorism on employment and consumer sentiment: Evidence from successful and failed terror attacks, Am. Econ. J.: Appl. Econ., 10, 246 Clauset, 2007, On the frequency of severe terrorist events, J. Confl. Resolut., 51, 58, 10.1177/0022002706296157 Cristelli, 2013, Measuring the intangibles: A metrics for the economic complexity of countries and products, PLoS One, 8, 10.1371/journal.pone.0070726 Dalla Valle, 2008, Copulae and operational risks, Int. J. Risk Assess. Manag., 9, 238, 10.1504/IJRAM.2008.019743 Flori, 2019, Better to stay apart: asset commonality, bipartite network centrality, and investment strategies, Ann. Oper. Res., 1 Freeman, 1978, Centrality in social networks conceptual clarification, Social Networks, 1, 215, 10.1016/0378-8733(78)90021-7 Garlaschelli, 2008, Maximum likelihood: Extracting unbiased information from complex networks, Phys. Rev. E, 78, 10.1103/PhysRevE.78.015101 Garlaschelli, 2009, Generalized bose-fermi statistics and structural correlations in weighted networks, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.038701 Gialampoukidis, 2016, Key player identification in terrorism-related social media networks using centrality measures, 112 Giudici, 2004, Modelling operational losses: a Bayesian approach, Qual. Reliab. Eng. Int., 20, 407, 10.1002/qre.655 Goel, 2017, How vulnerable are international financial markets to terrorism? An empirical study based on terrorist incidents worldwide, J. Financ. Stab., 33, 120, 10.1016/j.jfs.2017.11.001 GTI, 2020 Hidalgo, 2009, The building blocks of economic complexity, Proc. Natl. Acad. Sci., 106, 10570, 10.1073/pnas.0900943106 Hidalgo, 2007, The product space conditions the development of nations, Science, 317, 482, 10.1126/science.1144581 Husain, 2020, Identifying the global terror hubs and vulnerable motifs using complex network dynamics, Physica A, 540, 10.1016/j.physa.2019.123113 Husslage, 2015, Ranking terrorists in networks: A sensitivity analysis of Al Qaeda’s 9/11 attack, Social Networks, 42, 1, 10.1016/j.socnet.2015.02.003 Katz, 1953, A new status index derived from sociometric analysis, Psychometrika, 18, 39, 10.1007/BF02289026 Khusrav, 2013, Common drivers of transnational terrorism: Principal component analysis, Econ. Inq., 51, 707, 10.1111/j.1465-7295.2012.00469.x Kleinberg, 1999, Authoritative sources in a hyperlinked environment, J. ACM, 46, 604, 10.1145/324133.324140 Kyung, 2011, New findings from terrorism data: Dirichlet process random-effects models for latent groups, J. R. Stat. Soc. Ser. C. Appl. Stat., 60, 701, 10.1111/j.1467-9876.2011.00768.x Li, 2019, Analysis of the terrorist organization alliance network based on complex network theory, IEEE Access, 7, 103854, 10.1109/ACCESS.2019.2929798 Lindelauf, 2013, Cooperative game theoretic centrality analysis of terrorist networks: The cases of jemaah islamiyah and al qaeda, European J. Oper. Res., 229, 230, 10.1016/j.ejor.2013.02.032 Liu, 2018, Autologistic models for benchmark risk or vulnerability assessment of urban terrorism outcomes, J. R. Stat. Soc.: Ser. A (Stat. Soc.), 181, 803, 10.1111/rssa.12323 Malang, 2020, Identifying influential nodes of global terrorism network: A comparison for skeleton network extraction, Physica A, 545, 10.1016/j.physa.2019.123769 Matthew, 2005, The limits of terrorism: a network perspective, Int. Stud. Rev., 7, 617, 10.1111/j.1468-2486.2005.00536.x McMillan, 2020, Dynamic patterns of terrorist networks: Efficiency and security in the evolution of eleven islamic extremist attack networks, J. Quant. Criminol., 36, 559, 10.1007/s10940-019-09426-9 McMillan, 2018, Peer influence, friend selection, and gender: How network processes shape adolescent smoking, drinking, and delinquency, Social Networks, 55, 86, 10.1016/j.socnet.2018.05.008 Milo, 2002, Network motifs: simple building blocks of complex networks, Science, 298, 824, 10.1126/science.298.5594.824 Morrison, 2017, On economic complexity and the fitness of nations, Sci. Rep., 7, 1, 10.1038/s41598-017-14603-6 Nasirian, 2020, Detecting a most closeness-central clique in complex networks, European J. Oper. Res., 283, 461, 10.1016/j.ejor.2019.11.035 Palsson, 2020, Analysis of the impact of cyber events for cyber insurance, Geneva Pap. Risk Insur.-Issues Pract., 45, 564, 10.1057/s41288-020-00171-w Radicchi, 2016, Leveraging percolation theory to single out influential spreaders in networks, Phys. Rev. E, 93, 10.1103/PhysRevE.93.062314 Robins, 2007, Recent developments in exponential random graph (p*) models for social networks, Social Networks, 29, 192, 10.1016/j.socnet.2006.08.003 Sandler, 2004, An economic perspective on transnational terrorism, Eur. J. Political Econ., 20, 301, 10.1016/j.ejpoleco.2003.12.007 Saracco, 2015, Randomizing bipartite networks: the case of the World Trade Web, Sci. Rep., 5, 1, 10.1038/srep10595 Sharma, 2017, A complex network analysis of ethnic conflicts and human rights violations, Sci. Rep., 7, 1, 10.1038/s41598-017-09101-8 Squartini, 2011, Randomizing world trade I. A binary network analysis, Phys. Rev. E, 84 Squartini, 2011, Randomizing world trade II. A weighted network analysis, Phys. Rev. E, 84 Squartini, 2011, Analytical maximum-likelihood method to detect patterns in real networks, New J. Phys., 13, 10.1088/1367-2630/13/8/083001 Squartini, 2015, Unbiased sampling of network ensembles, New J. Phys., 17, 10.1088/1367-2630/17/2/023052 Squartini, 2013, Early-warning signals of topological collapse in interbank networks, Sci. Rep., 3, 1, 10.1038/srep03357 Tacchella, 2012, A new metrics for countries’ fitness and products’ complexity, Sci. Rep., 2, 1, 10.1038/srep00723 Tacchella, 2013, Economic complexity: conceptual grounding of a new metrics for global competitiveness, J. Econom. Dynam. Control, 37, 1683, 10.1016/j.jedc.2013.04.006 Yin, 2018, Higher-order clustering in networks, Phys. Rev. E, 97, 10.1103/PhysRevE.97.052306 Yuvaraj, 2021, Topological clustering of multilayer networks, Proc. Natl. Acad. Sci., 118, 10.1073/pnas.2019994118