Assessing harmfulness and vulnerability in global bipartite networks of terrorist-target relationships
Tài liệu tham khảo
Abadie, 2006, Poverty, political freedom, and the roots of terrorism, Amer. Econ. Rev., 96, 50, 10.1257/000282806777211847
Abadie, 2008, Terrorism and the world economy, Eur. Econ. Rev., 52, 1, 10.1016/j.euroecorev.2007.08.005
Aitkin, 2017, Statistical modelling of a terrorist network, J. R. Stat. Soc.: Ser. A (Stat. Soc.), 180, 751, 10.1111/rssa.12233
Aldasoro, 2022, The drivers of cyber risk, J. Financ. Stab., 60, 10.1016/j.jfs.2022.100989
Alshamsi, 2018, Optimal diversification strategies in the networks of related products and of related research areas, Nature Commun., 9, 1, 10.1038/s41467-018-03740-9
Alvarez-Rodriguez, 2021, Evolutionary dynamics of higher-order interactions in social networks, Nat. Hum. Behav., 5, 586, 10.1038/s41562-020-01024-1
Basu, 2021, Identifying individuals associated with organized criminal networks: a social network analysis, Social Networks, 64, 42, 10.1016/j.socnet.2020.07.009
Berzinji, 2012, Detecting key players in terrorist networks, 297
Blomberg, 2004, The macroeconomic consequences of terrorism, J. Monetary Econ., 51, 1007, 10.1016/j.jmoneco.2004.04.001
Bonacich, 2001, Eigenvector-like measures of centrality for asymmetric relations, Social Networks, 23, 191, 10.1016/S0378-8733(01)00038-7
Borgatti, 2006, Identifying sets of key players in a social network, Comput. Math. Org. Theor., 12, 21, 10.1007/s10588-006-7084-x
Brin, 1998, The anatomy of a large-scale hypertextual web search engine, Comput. Netw. ISDN Syst., 30, 107, 10.1016/S0169-7552(98)00110-X
Brodeur, 2018, The effect of terrorism on employment and consumer sentiment: Evidence from successful and failed terror attacks, Am. Econ. J.: Appl. Econ., 10, 246
Clauset, 2007, On the frequency of severe terrorist events, J. Confl. Resolut., 51, 58, 10.1177/0022002706296157
Cristelli, 2013, Measuring the intangibles: A metrics for the economic complexity of countries and products, PLoS One, 8, 10.1371/journal.pone.0070726
Dalla Valle, 2008, Copulae and operational risks, Int. J. Risk Assess. Manag., 9, 238, 10.1504/IJRAM.2008.019743
Flori, 2019, Better to stay apart: asset commonality, bipartite network centrality, and investment strategies, Ann. Oper. Res., 1
Freeman, 1978, Centrality in social networks conceptual clarification, Social Networks, 1, 215, 10.1016/0378-8733(78)90021-7
Garlaschelli, 2008, Maximum likelihood: Extracting unbiased information from complex networks, Phys. Rev. E, 78, 10.1103/PhysRevE.78.015101
Garlaschelli, 2009, Generalized bose-fermi statistics and structural correlations in weighted networks, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.038701
Gialampoukidis, 2016, Key player identification in terrorism-related social media networks using centrality measures, 112
Giudici, 2004, Modelling operational losses: a Bayesian approach, Qual. Reliab. Eng. Int., 20, 407, 10.1002/qre.655
Goel, 2017, How vulnerable are international financial markets to terrorism? An empirical study based on terrorist incidents worldwide, J. Financ. Stab., 33, 120, 10.1016/j.jfs.2017.11.001
GTI, 2020
Hidalgo, 2009, The building blocks of economic complexity, Proc. Natl. Acad. Sci., 106, 10570, 10.1073/pnas.0900943106
Hidalgo, 2007, The product space conditions the development of nations, Science, 317, 482, 10.1126/science.1144581
Husain, 2020, Identifying the global terror hubs and vulnerable motifs using complex network dynamics, Physica A, 540, 10.1016/j.physa.2019.123113
Husslage, 2015, Ranking terrorists in networks: A sensitivity analysis of Al Qaeda’s 9/11 attack, Social Networks, 42, 1, 10.1016/j.socnet.2015.02.003
Katz, 1953, A new status index derived from sociometric analysis, Psychometrika, 18, 39, 10.1007/BF02289026
Khusrav, 2013, Common drivers of transnational terrorism: Principal component analysis, Econ. Inq., 51, 707, 10.1111/j.1465-7295.2012.00469.x
Kleinberg, 1999, Authoritative sources in a hyperlinked environment, J. ACM, 46, 604, 10.1145/324133.324140
Kyung, 2011, New findings from terrorism data: Dirichlet process random-effects models for latent groups, J. R. Stat. Soc. Ser. C. Appl. Stat., 60, 701, 10.1111/j.1467-9876.2011.00768.x
Li, 2019, Analysis of the terrorist organization alliance network based on complex network theory, IEEE Access, 7, 103854, 10.1109/ACCESS.2019.2929798
Lindelauf, 2013, Cooperative game theoretic centrality analysis of terrorist networks: The cases of jemaah islamiyah and al qaeda, European J. Oper. Res., 229, 230, 10.1016/j.ejor.2013.02.032
Liu, 2018, Autologistic models for benchmark risk or vulnerability assessment of urban terrorism outcomes, J. R. Stat. Soc.: Ser. A (Stat. Soc.), 181, 803, 10.1111/rssa.12323
Malang, 2020, Identifying influential nodes of global terrorism network: A comparison for skeleton network extraction, Physica A, 545, 10.1016/j.physa.2019.123769
Matthew, 2005, The limits of terrorism: a network perspective, Int. Stud. Rev., 7, 617, 10.1111/j.1468-2486.2005.00536.x
McMillan, 2020, Dynamic patterns of terrorist networks: Efficiency and security in the evolution of eleven islamic extremist attack networks, J. Quant. Criminol., 36, 559, 10.1007/s10940-019-09426-9
McMillan, 2018, Peer influence, friend selection, and gender: How network processes shape adolescent smoking, drinking, and delinquency, Social Networks, 55, 86, 10.1016/j.socnet.2018.05.008
Milo, 2002, Network motifs: simple building blocks of complex networks, Science, 298, 824, 10.1126/science.298.5594.824
Morrison, 2017, On economic complexity and the fitness of nations, Sci. Rep., 7, 1, 10.1038/s41598-017-14603-6
Nasirian, 2020, Detecting a most closeness-central clique in complex networks, European J. Oper. Res., 283, 461, 10.1016/j.ejor.2019.11.035
Palsson, 2020, Analysis of the impact of cyber events for cyber insurance, Geneva Pap. Risk Insur.-Issues Pract., 45, 564, 10.1057/s41288-020-00171-w
Radicchi, 2016, Leveraging percolation theory to single out influential spreaders in networks, Phys. Rev. E, 93, 10.1103/PhysRevE.93.062314
Robins, 2007, Recent developments in exponential random graph (p*) models for social networks, Social Networks, 29, 192, 10.1016/j.socnet.2006.08.003
Sandler, 2004, An economic perspective on transnational terrorism, Eur. J. Political Econ., 20, 301, 10.1016/j.ejpoleco.2003.12.007
Saracco, 2015, Randomizing bipartite networks: the case of the World Trade Web, Sci. Rep., 5, 1, 10.1038/srep10595
Sharma, 2017, A complex network analysis of ethnic conflicts and human rights violations, Sci. Rep., 7, 1, 10.1038/s41598-017-09101-8
Squartini, 2011, Randomizing world trade I. A binary network analysis, Phys. Rev. E, 84
Squartini, 2011, Randomizing world trade II. A weighted network analysis, Phys. Rev. E, 84
Squartini, 2011, Analytical maximum-likelihood method to detect patterns in real networks, New J. Phys., 13, 10.1088/1367-2630/13/8/083001
Squartini, 2015, Unbiased sampling of network ensembles, New J. Phys., 17, 10.1088/1367-2630/17/2/023052
Squartini, 2013, Early-warning signals of topological collapse in interbank networks, Sci. Rep., 3, 1, 10.1038/srep03357
Tacchella, 2012, A new metrics for countries’ fitness and products’ complexity, Sci. Rep., 2, 1, 10.1038/srep00723
Tacchella, 2013, Economic complexity: conceptual grounding of a new metrics for global competitiveness, J. Econom. Dynam. Control, 37, 1683, 10.1016/j.jedc.2013.04.006
Yin, 2018, Higher-order clustering in networks, Phys. Rev. E, 97, 10.1103/PhysRevE.97.052306
Yuvaraj, 2021, Topological clustering of multilayer networks, Proc. Natl. Acad. Sci., 118, 10.1073/pnas.2019994118