Dynamo Models for Planets Other Than Earth

Space Science Reviews - Tập 152 - Trang 617-649 - 2009
Sabine Stanley1, Gary A. Glatzmaier2
1Department of Physics, University of Toronto, Toronto, Canada
2Earth and Planetary Sciences Department, Earth and Marine Sciences Building, University of California, Santa Cruz, USA

Tóm tắt

Observations from planetary spacecraft missions have demonstrated a spectrum of dynamo behaviour in planets. From currently active dynamos, to remanent crustal fields from past dynamo action, to no observed magnetization, the planets and moons in our solar system offer magnetic clues to their interior structure and evolution. Here we review numerical dynamo simulations for planets other than Earth. For the terrestrial planets and satellites, we discuss specific magnetic field oddities that dynamo models attempt to explain. For the giant planets, we discuss both non-magnetic and magnetic convection models and their ability to reproduce observations of surface zonal flows and magnetic field morphology. Future improvements to numerical models and new missions to collect planetary magnetic data will continue to improve our understanding of the magnetic field generation process inside planets.

Tài liệu tham khảo

M.H. Acuna, N. Ness, The magnetic field of Saturn: Pioneer 11 observations. Science 207, 444–446 (1980) M.H. Acuna, J. Connerney, N. Ness, Topology of Saturn’s main magnetic field. Nature 292, 721–726 (1981) M.H. Acuna, J. Connerney, N. Ness, The Z 3 zonal harmonic model of Saturn’s magnetic field: Analyses and implications. J. Geophys. Res. 88, 8771–8778 (1983) M.H. Acuna et al., Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999) O. Aharonson, M. Zuber, S. Solomon, Crustal remanence in an internally magnetized non-uniform shell: a possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett. 218, 261–268 (2004) M. Allison, A similarity model for the windy jovian thermocline. Planet. Space Sci. 48, 753–774 (2000) B. Anderson et al., The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82–85 (2008) J. Andrews-Hanna, M. Zuber, W. Banerdt, The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008) J. Arkani-Hamed, B. Seyed-Mahmoud, K.D. Aldridge, R.E. Baker, Tidal excitation of elliptical instability in the Martian core: Possible mechanism for generating the core dynamo. J. Geophys. Res. 113 (2008). doi:10.1029/2007JE002982 D.H. Atkinson, J.B. Pollack, A. Seiff, The Galileo Probe Doppler Wind Experiment: measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 103, 22911–22928 (1998) J. Aubert, J. Wicht, Axial vs. equatorial dipolar dynamo models with implications for planetary magnetic fields. Earth Planet. Sci. Lett. 221, 409–419 (2004) J. Aubert, D. Brito, H.-C. Nataf, P. Cardin, J.-P. Masson, A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 128, 51–74 (2001) J.M. Aurnou, Planetary core dynamics and convective heat transfer scaling. Geophys. Astrophys. Fluid Dyn. 101, 327–345 (2007) J.M. Aurnou, M. Heimpel, J. Wicht, The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190, 110–126 (2007) J. Aurnou, M. Heimpel, L. Allen, E. King, J. Wicht, Convective heat transfer and the pattern of thermal emission on the gas giants. Geophys. J. Int. 173, 793–801 (2008) G.E. Backus, Gross thermodynamics of heat engines in the deep interior of the Earth. Proc. Natl. Acad. Sci. Wash. 72, 1555–1558 (1975) P. Bodenheimer, G. Laughlin, D.N.C. Lin, On the radii of extrasolar giant planets. Astrophys. J. 592, 555–563 (2003) D. Breuer, T. Spohn, Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J. Geophys. Res. 108 (2003). doi:10.1029/2002JE001999 D. Breuer, D.A. Yuen, T. Spohn, S. Zhang, Three dimensional models of Martian mantle convection with phase transitions. Geophys. Res. Lett. 25, 229–232 (1998) F.H. Busse, A model of mean zonal flows in the major planets. Geophys. Astrophys. Fluid Dyn. 23, 153–174 (1983) F.H. Busse, Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14, 1301–1314 (2002) F.H. Busse, C.R. Carrigan, Laboratory simulation of thermal convection in rotating planets and stars. Science 191, 81–83 (1976) B. Chen, J. Li, S. Hauck, Non-ideal liquidus curve in the Fe-S system and Mercury’s snowing core. Geophys. Res. Lett. 35 (2008). doi:10.1029/2008GL033311 S. Childress, A. Soward, Convection-driven hydromagnetic dynamo. Phys. Rev. Lett. 29, 837–839 (1972) J.Y.-K. Cho, L.M. Polvani, The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273, 335–337 (1996) U.R. Christensen, Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech. 470, 115–133 (2002) U. Christensen, A deep dynamo generating Mercury’s magnetic field. Nature 444, 1056–1058 (2006) U. Christensen, J. Wicht, Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn. Icarus 196, 16–34 (2008) S. Cisowski, D. Collinson, S. Runcorn, A. Stephenson, M. Fuller, A review of lunar paleointensity data and implications for the origin of lunar magnetism. J. Geophys. Res. 88, 691–704 (1983) J. Connerney, Magnetic fields of the outer planets. J. Geophys. Res. 98, 18659–18679 (1993) J. Connerney, M.H. Acuna, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103, 11929–11939 (1998) T. Cowling, The magnetic field of sunspots. Mon. Not. R. Astron. Soc. 94, 39–48 (1933) L. Davis, E. Smith, A model of Saturn’s magnetic field based on all available data. J. Geophys. Res. 95, 15257–15261 (1990) I. Dobbs-Dixon, D.N.C. Lin, Atmospheric dynamics of short-period extrasolar gas giant planets I. Dependence of nightside temperature on opacity. Astrophys. J. 673, 513–548 (2008) E. Dormy, J.-P. Valet, V. Courtillot, Numerical models of the geodynamo and observational constraints. Geochem. Geophys. Geosyst. 1 (2000), paper 2000GC000062 T.E. Dowling, Dynamics of Jovian atmospheres. Ann. Rev. Fluid Mech. 27, 293–334 (1995) L. Elkins-Tanton, E. Parmentier, P. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteorit. Planet. Sci. 38, 1753–1771 (2003) L. Elkins-Tanton, S. Zaranek, E. Parmentier, P. Hess, Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005) M. Evonuk, G.A. Glatzmaier, Thermal convection in a 3D rotating density-stratified giant planet without a core. Geophys. J. Int. (2009, under review) V.C.A. Ferraro, The nonuniform rotation of the Sun and its magnetic field. Mon. Not. R. Astron. Soc. 97, 458–472 (1937) H. Frey, R. Shultz, Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys. Res. Lett. 15, 229–232 (1988) M. Fuller, S. Cisowski, Lunar paleomagnetism, in Geomagnetism, vol. 2, ed. by J. Jacobs (Academic Press, San Diego, 1987), pp. 307–456 I. Garrick-Bethel, B. Weiss, D. Shuster, J. Buz, Early lunar magnetism. Science 323, 356–359 (2009) G. Giampieri, A. Balogh, Mercury’s thermoelectric dynamo model revisited. Planet. Space Sci. 50, 757–762 (2002) G. Giampieri, M. Dougherty, Rotation rate of Saturn’s interior from magnetic field observations. Geophys. Res. Lett. 31 (2004). doi:10.1029/2004GL020194 G. Giampieri, M.K. Dougherty, E.J. Smith, C.T. Russell, A regular period for Saturn’s magnetic field that may track its internal rotation. Nature 441, 62–64 (2006) P.A. Gilman, J. Miller, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. Astrophys. J. Suppl. 46, 211–238 (1981) K.H. Glassmeier, H.U. Auster, U. Motschmann, A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett. 34 (2007a). doi:10.1029/2007GL031662 K.H. Glassmeier et al., Electromagnetic induction effects and dynamo action in the Hermean system. Space Science Rev. 132, 511–527 (2007b) G.A. Glatzmaier, Numerical simulations of stellar convective dynamos I. The model and method. J. Comput. Phys. 55, 461–484 (1984) G.A. Glatzmaier, Geodynamo simulations—How realistic are they? Ann. Rev. Earth Planet. Sci. 30, 237–257 (2002) G.A. Glatzmaier, A saturnian dynamo simulation. American Geophysical Union Fall Meeting 2005, San Francisco, CA (2005) G.A. Glatzmaier, A note on Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 665–666 (2008) G.A. Glatzmaier, P.A. Gilman, Compressible convection in a rotating spherical shell. III. Analytic model for compressible vorticity waves. Astrophys. J. Suppl. 45, 381–388 (1981) G.A. Glatzmaier, P.A. Gilman, Compressible convection in a rotating spherical shell. V. Induced differential rotation and meridional circulation. Astrophys. J. 256, 316–330 (1982) G.A. Glatzmaier, R.S. Coe, L. Hongre, P.H. Roberts, The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401, 885–890 (1999) G.A. Glatzmaier, M. Evonuk, T.M. Rogers, Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn. 103, 31–51 (2009) P. Goldreich, S. Soter, Q in the solar system. Icarus 5, 375–389 (1966) N. Gomez-Perez, M. Heimpel, Numerical models of zonal flow dynamos: an application to the ice giants. Geophys. Astrophys. Fluid Dyn. 101, 371–388 (2007) J. Grosser, K.H. Glassmeier, A. Stadelmann, Induced magnetic field effects at planet Mercury. Planet. Space Sci. 52, 1251–1260 (2004) E. Grote, F. Busse, Hemispherical dynamos generated by convection in rotating spherical shells. Phys. Rev. E 62, 4457–4460 (2000) E. Grote, F. Busse, A. Tilgner, Convection-driven quadrupolar dynamos in rotating spherical shells. Phys. Rev. E 60, 5025–5028 (1999) E. Grote, F. Busse, A. Tilgner, Regular and chaotic spherical dynamos. Phys. Earth Planet. Int. 117, 259–272 (2000) D. Gubbins, C. Barber, S. Gibbons, J. Love, Kinematic dynamo action in a sphere II. Symmetry selection. Proc. R. Soc. Lond. A 456, 1669–1683 (2000) T. Guillot, A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47, 1183–1200 (1999) T. Guillot, The interiors of giant planets: models and outstanding questions. Ann. Rev. Earth Planet. Sci. 33, 493–530 (2005) T. Guillot, D.J. Stevenson, W.B. Hubbard, D. Saumon, The interior of Jupiter, in Jupiter: The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T. Dowling, W. McKinnon (Cambridge Univ. Press, Cambridge, 2004) J. Halekas et al., Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer. J. Geophys. Res. 106, 27841–27852 (2001) H.B. Hammel, I. de Pater, S. Gibbard, G.W. Lockwood, K. Rages, Uranus in 2003: zonal winds, banded structure, and discrete features. Icarus 175, 534–545 (2005) C.J. Hansen, S.D. Kawaler, Stellar Interiors: Physical Principles, Structure, and Evolution. Astronomy and Astrophysics Library (Springer, Berlin, 1994) J.E. Hart, G.A. Glatzmaier, J. Toomre, Spacelaboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech. 173, 519–544 (1986) H. Harder, Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle. J. Geophys. Res. 103, 16775–16797 (1998) S. Hauck, J. Aurnou, A. Dombard, Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J. Geophys. Res. 111 (2006). doi:10.1029/2005JE002557 M. Heimpel, N. Gomez Perez, Numerical models of the transition from zonal flow to dynamo action in Jupiter and Saturn. American Geophysical Union Fall Meeting 2008, P11B-1276, San Francisco, CA (2008) M. Heimpel, J. Aurnou, F. Al-Shamali, N. Gomez-Perez, A numerical study of dynamo action as a function of spherical shell geometry. Earth Planet. Sci. Lett. 236, 542–557 (2005a) M. Heimpel, J. Aurnou, J. Wicht, Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193–196 (2005b) J.M. Hewitt, D.P. McKenzie, N.O. Weiss, Dissipative heating in convective flows. J. Fluid Mech. 68, 721–738 (1975) D. Heyner et al., Concerning the initial temporal evolution of a Hermean feedback dynamo. Earth Planet. Sci. Lett. (2009, submitted) L. Hood, N. Artemieva, Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations. Icarus 193, 485–502 (2008) W.B. Hubbard, Gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1990) W. Hubbard, M. Podolak, D. Stevenson, Interior of Neptune, in Neptune and Triton, ed. by D. Cruickshank (University of Arizona Press, Tucson, 1995), pp. 109–138 N. Ishihara, S. Kida, Axial and equatorial magnetic dipoles generated in a rotating spherical shell. J. Phys. Soc. Jpn. 69, 1582–1585 (2000) C.A. Jones, K.M. Kuzanyan, Compressible convection in the deep atmospheres of giant planets. Icarus (2009, in press) Y. Ke, V. Solomatov, Early transient superplumes and the origin of the Martian crustal dichotomy. J. Geophys. Res. 111 (2006). doi:10.1029/2005JE002631 M. Kivelson et al., Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384, 537–541 (1996) M. Kono, P.H. Roberts, Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys. 40, 4-1–53 (2002) W. Kuang, W. Jiang, T. Wang, Sudden termination of Martian dynamo? Implications from subcritical dynamo simulations. Geophys. Res. Lett. 35 (2008). doi:10.1029/2008GL034183 C. Kutzner, U. Christensen, From stable dipolar towards reversing numerical dynamos. Phys. Earth Planet. Int. 131, 29–45 (2002) Y. Lian, A.P. Showman, Generation of zonal jets by moist convection on the giant planets. Icarus (2009, under review) J. Liu, P.M. Goldreich, D.J. Stevenson, Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 506–517 (2008) J. Love, Dynamo action and the nearly axisymmetric magnetic field of Saturn. Geophys. Res. Lett. 27, 2889–2892 (2000) J.B. Manneville, P. Olson, Banded convection in rotating fluid spheres and the circulation of the jovian atmosphere. Icarus 122, 242–250 (1996) J. Margot, S. Peale, R. Jurgens, M. Slade, I. Holin, Large longitude libration of Mercury reveals a molten core. Science 316, 710–714 (2007) M. Marinova, O. Aharonson, E. Asphaug, Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008) N. Ness, K. Behannon, R. Lepping, Y. Whang, Magnetic field of Mercury confirmed. Science 255, 204–206 (1975) N. Ness, K. Behannon, R. Lepping, Y. Whang, Observations of Mercury’s magnetic field. Icarus 28, 479–488 (1976) N. Ness et al., Magnetic field studies by Voyager 1: Preliminary results at Saturn. Science 212, 211–217 (1981) F. Nimmo, D. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. 105, 11969–11979 (2000) F. Nimmo, S. Hart, D. Korycansky, C. Agnor, Implications of an impact origin for the martian hemispheric dichotomy. Nature 453, 1220–1223 (2008) M. Podolak, W. Hubbard, D. Stevenson, Models of Uranus’ interior and magnetic field, in Uranus, ed. by J. Bergstralh, E. Minor, M. Matthews (University of Arizona Press, Tucson, 1991), pp. 29–61 C.C. Porco, R.A. West, A. McEwen et al., Cassini imaging of Jupiter’s atmosphere. satellites, and rings. Science 299, 1541–1547 (2003) J. Proudman, On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. A 92, 408–424 (1916) P.B. Rhines, Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975) J. Roberts, S. Zhong, Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. 111 (2006). doi:10.1029/2005JE002668 A. Sanchez-Lavega, S. Perez-Hoyos, J.F. Rojas, R. Hueso, R.G. French, A strong decrease in Saturn’s equatorial jet at cloud level. Nature 423, 623–625 (2002) G. Sarson, C. Jones, K. Zhang, G. Schubert, Magnetoconvection dynamos and the magnetic fields of Io and Ganymede. Science 276, 1106–1108 (1997) G. Schubert, M. Ross, D. Stevenson, T. Spohn, Mercury’s thermal history and the generation of its magnetic field, in Mercury, ed. by F. Vilas, C. Chapman, M. Matthews (University of Arizona Press, Tucson, 1988), pp. 429–460 G. Schubert, K. Chan, X. Liao, K. Zhang, Planetary dynamos: Effects of electrically coonducting flows overlying turbulent regions of magnetic field generation. Icarus 172, 305–315 (2004) A.P. Showman, K. Menou, J.Y.-K. Cho, Atmospheric circulation of hot Jupiters: a review of current understanding, in APS Conf. Ser., ed. by F. Rasio et al. (APS, San Francisco, 2007) E. Smith et al., Saturn’s magnetic field and magnetosphere. Science 207, 407–410 (1980) L. Srnka, Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. Phys. Earth Planet. Int. 11, 184–190 (1976) S. Stanley, A dynamo model of Saturn’s extremely axisymmetric internal magnetic field. Eos Trans. AGU 89(23), Jt. Assem. Suppl., Abstract GP31A-02 (2008) S. Stanley, J. Bloxham, Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004) S. Stanley, J. Bloxham, Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus 184, 556–572 (2006) S. Stanley, A. Mohammadi, Effects of an outer thin stably stratified layer on planetary dynamos. Phys. Earth Planet. Int. 168, 179–190 (2008) S. Stanley, J. Bloxham, W. Hutchison, M. Zuber, Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett. 234, 27–38 (2005) S. Stanley, L. Elkins-Tanton, M. Zuber, E.M. Parmentier, Mars’ paleomagnetic field as the result of a single-hemisphere dynamo. Science 321, 1822–1825 (2008) S.V. Starchenko, C.A. Jones, Typical velocities and magnetic field strengths in planetary interiors. Icarus 157, 426–435 (2002) D. Stegman, A. Hellinek, S. Zatman, J. Baumgardner, M. Richards, An early lunar core dynamo driven by thermochemical mantle convection. Nature 421, 143–146 (2003) S. Stellmach, P. Garaud, A. Traxler, N. Brummell, T. Radko, 3D simulations of layer formation by compositionally driven double diffusive convection. Science (2009, under review) A. Stephenson, Crustal remanence and the magnetic moment of Mercury. Earth Planet. Sci. Lett. 28, 454–458 (1975) D. Stevenson, Saturn’s luminosity and magnetism. Science 208, 746–748 (1980) D. Stevenson, Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn. Geophys. Astrophys. Fluid Dyn. 21, 113–127 (1982) D. Stevenson, Planetary magnetic fields. Rep. Prog. Phys. 46, 555–620 (1983) D. Stevenson, Mercury’s magnetic field: a thermoelectric dynamo? Earth Planet. Sci. Lett. 82, 114–120 (1987) D. Stevenson, Mars’ core and magnetism. Nature 412, 214–219 (2001) D.J. Stevenson, E.E. Salpeter, The phase diagram and transport properties of hydrogen-helium fluid planets. Astrophys. J. Suppl. 35, 221–237 (1977) F. Takahashi, M. Matsushima, Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys. Res. Lett. 33 (2006). doi:10.1029/2006GL025792 G. Taylor, Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. Lond. A 93, 99–113 (1917) A. Tilgner, Zonal wind Driven by inertial modes. Phys. Rev. Lett. 99 (2007). doi:10.1103/PhysRevLet.99.194501 R. Vilim, S. Stanley, S. Hauck, Dynamo generation in the presence of iron snow zones: Application to mercury’s weak surface field. Eos Trans. AGU 89(53), Fall Meet. Suppl., Abstract U21A-0004 (2008) W. Watters, M. Zuber, B. Hager, Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophys. Res. 114 (2009). doi:10.1029/2007JE002964 S.A. Weinstein, The effects of a deep mantle endothermic phase change on the structure of thermal convection in silicate planets. J. Geophys. Res. 100, 11719–11728 (1995) B. Weiss et al., Records of an ancient Martian magnetic field in ALH84001. Earth Planet. Sci. Lett. 201, 449–463 (2002) J. Wicht et al., The origin of Mercury’s internal magnetic field. Space Sci. Rev. 132, 261–290 (2007) D. Wilhelms, S. Squyres, The Martian hemispheric dichotomy may be due to a giant impact basin. Nature 309, 138–140 (1984) G.P. Williams, Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399–1424 (1978) G.P. Williams, Jovian dynamics. Part III: multiple, migrating, and equatorial jets. J. Atmos. Sci. 60, 1270–1296 (2003) J. Williams, F. Nimmo, Thermal evolution of the Martian core: Implications for an early dynamo. Geology 32, 97–100 (2004) C. Yoder, A. Konopliv, D. Yuan, E. Standish, W. Folkner, Fluid core size of Mars from detection of the solar tide. Science 300, 299–303 (2003) S. Zhong, M. Zuber, Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001) M. Zuber et al., The geophysics of Mercury: Current status and anticipated insights from the MESSENGER mission. Space Sci. Rev. 131, 105–132 (2007)