3D modeling of the activated states of constitutively active mutants of rhodopsin
Tài liệu tham khảo
Gether, 2000, Uncovering molecular mechanisms involved in activation of G protein-coupled receptors, Endocr. Rev., 21, 90, 10.1210/edrv.21.1.0390
Fredriksson, 2003, The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints, Mol. Pharmacol., 63, 1256, 10.1124/mol.63.6.1256
Drews, 2000, Drug discovery: a historical perspective, Science, 287, 1960, 10.1126/science.287.5460.1960
Parnot, 2002, Lessons from constitutively active mutants of G protein-coupled receptors, Trends Endocrinol Metab., 13, 336, 10.1016/S1043-2760(02)00628-8
Palczewski, 2000, Crystal structure of rhodopsin: a G-protein-coupled receptor, Science, 289, 739, 10.1126/science.289.5480.739
Teller, 2001, Advances in determination of a high-resoultion three-dimensional structure of rhodpsin, a model of G-protein-coupled receptors (GPCRs), Biochemistry, 40, 7761, 10.1021/bi0155091
Okada, 2002, Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography, Proc. Natl. Acad. Sci. USA, 99, 5982, 10.1073/pnas.082666399
Li, 2004, Structure of bovine rhodopsin in a trigonal crystal form, J. Mol. Biol., 343, 1409, 10.1016/j.jmb.2004.08.090
Okada, 2004, The retinal conformation and its environment in rhodopsin in light of a new 2.2Å crystal structure, J. Mol. Biol., 342, 571, 10.1016/j.jmb.2004.07.044
Hubbell, 2003, Rhodopsin structure, dynamics and activation, Adv. Protein Chem., 63, 243, 10.1016/S0065-3233(03)63010-X
Ruprecht, 2004, Electron crystallography reveals the structure of metarhodopsin I, EMBO J., 23, 3609, 10.1038/sj.emboj.7600374
Kim, 1997, Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state, Proc. Natl. Acad. Sci. USA, 94, 14273, 10.1073/pnas.94.26.14273
Han, 1998, Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6, Biochemistry, 37, 8253, 10.1021/bi980147r
Kim, 2004, Structural origins of constitutive activation in rhodopsin: role of the K296/E113 salt bridge, Proc. Natl. Acad. Sci. USA, 101, 12508, 10.1073/pnas.0404519101
Ballesteros, 2001, Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure–function analysis of rhodopsin-like receptors, Mol. Pharmacol., 60, 1, 10.1124/mol.60.1.1
Farrens, 1996, Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin, Science, 274, 768, 10.1126/science.274.5288.768
Gether, 1997, Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor, EMBO J., 16, 6737, 10.1093/emboj/16.22.6737
Jensen, 2001, Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the beta 2 adrenergic receptor mapped by site-selective fluorescent labeling, J. Biol. Chem., 276, 9279, 10.1074/jbc.M004871200
Sheikh, 1999, Similar structures and shared switch mechanisms of the beta2-adrenoceptor and the parathyroid hormone receptor. Zn(II) bridges between helices III and VI block activation, J. Biol. Chem., 274, 17033, 10.1074/jbc.274.24.17033
Sylte, 2001, Ligand induced conformational states of the 5-HT(1A) receptor, Eur. J. Pharmacol., 416, 33, 10.1016/S0014-2999(01)00860-3
Shapiro, 2002, Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6, J. Biol. Chem., 277, 11441, 10.1074/jbc.M111675200
Khorana, 2000, Molecular biology of light transduction by the mammalian photoreceptor, rhodopsin, J. Biomol. Struct. Dyn., 11, 1, 10.1080/07391102.2000.10506598
Elling, 1999, Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor, Proc. Natl. Acad. Sci. USA, 96, 12322, 10.1073/pnas.96.22.12322
Holst, 2000, Partial agonism through a zinc-ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor, Mol. Pharmacol., 58, 263, 10.1124/mol.58.2.263
Porter, 1999, Characteristics for a salt-bridge switch mutation of the alpha(1b) adrenergic receptor. Altered pharmacology and rescue of constitutive activity, J. Biol. Chem., 274, 34535, 10.1074/jbc.274.49.34535
Gerber, 2001, An activation switch in the ligand binding pocket of the C5a receptor, J. Biol. Chem., 276, 3394, 10.1074/jbc.M007748200
Donnelly, 1999, Conserved polar residues in the transmembrane domain of the human tachykinin NK2 receptor: functional roles and structural implications, Biochem. J., 339, 55, 10.1042/bj3390055
Govaerts, 2001, A conserved Asn in transmembrane helix 7 is an on/off switch in the activation of the thyrotropin receptor, J. Biol. Chem., 276, 22991, 10.1074/jbc.M102244200
Miura, 2002, Constitutive activation of angiotensin II type 1 receptor alters the orientation of transmembrane helix-2, J. Biol. Chem., 277, 24299, 10.1074/jbc.M202743200
Crozier, 2003, Molecular dynamics simulation of dark-adapted rhodopsin in an explicit membrane bilayer: coupling between local retinal and larger scale conformational change, J. Mol. Biol., 333, 493, 10.1016/j.jmb.2003.08.045
Borhan, 2000, Movement of retinal along the visual transduction path, Science, 288, 2209, 10.1126/science.288.5474.2209
Nikiforovich, 2003, 3D Model for meta-II rhodopsin, an activated G-protein-coupled receptor, Biochemistry, 42, 9110, 10.1021/bi034586o
Dunfield, 1978, Energy parameters in polypeptides. 8. Empirical potential energy algorithm for the conformational analysis of large molecules, J. Phys. Chem., 82, 2609, 10.1021/j100513a014
Nemethy, 1983, Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occuring amino acids, J. Phys. Chem., 87, 1883, 10.1021/j100234a011
Pebay-Peyroula, 1997, X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases, Science, 277, 1676, 10.1126/science.277.5332.1676
Deisenhofer, 1995, Crystallographic refinement at 2.3Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis, J. Mol. Biol., 246, 429, 10.1006/jmbi.1994.0097
Nikiforovich, 1991, Topographical requirements for delta-selective opioid peptides, Biopolymers, 31, 941, 10.1002/bip.360310804
Robinson, 1992, Constitutively active mutants of rhodopsin, Neuron, 9, 719, 10.1016/0896-6273(92)90034-B
Rao, 1994, Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness, Nature, 367, 639, 10.1038/367639a0
Rao, 1996, Activating mutations of rhodopsin and other G protein-coupled receptors, Annu. Rev. Biophys. Biomol. Struct., 25, 287, 10.1146/annurev.bb.25.060196.001443
Sakmar, 2002, Rhodopsin: insights from recent structural studies, Annu. Rev. Biophys. Biomol. Struct., 31, 443, 10.1146/annurev.biophys.31.082901.134348
Gross, 2003, Characterization of rhodopsin congenital night blindness mutant T94I, Biochemistry, 42, 2009, 10.1021/bi020613j
Jin, 2003, Opsin activation as a cause of congenital night blindness, Nat. Neurosci., 6, 731, 10.1038/nn1070