3D modeling of the activated states of constitutively active mutants of rhodopsin

Biochemical and Biophysical Research Communications - Tập 345 - Trang 430-437 - 2006
Gregory V. Nikiforovich1, Garland R. Marshall1
1Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA

Tài liệu tham khảo

Gether, 2000, Uncovering molecular mechanisms involved in activation of G protein-coupled receptors, Endocr. Rev., 21, 90, 10.1210/edrv.21.1.0390 Fredriksson, 2003, The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints, Mol. Pharmacol., 63, 1256, 10.1124/mol.63.6.1256 Drews, 2000, Drug discovery: a historical perspective, Science, 287, 1960, 10.1126/science.287.5460.1960 Parnot, 2002, Lessons from constitutively active mutants of G protein-coupled receptors, Trends Endocrinol Metab., 13, 336, 10.1016/S1043-2760(02)00628-8 Palczewski, 2000, Crystal structure of rhodopsin: a G-protein-coupled receptor, Science, 289, 739, 10.1126/science.289.5480.739 Teller, 2001, Advances in determination of a high-resoultion three-dimensional structure of rhodpsin, a model of G-protein-coupled receptors (GPCRs), Biochemistry, 40, 7761, 10.1021/bi0155091 Okada, 2002, Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography, Proc. Natl. Acad. Sci. USA, 99, 5982, 10.1073/pnas.082666399 Li, 2004, Structure of bovine rhodopsin in a trigonal crystal form, J. Mol. Biol., 343, 1409, 10.1016/j.jmb.2004.08.090 Okada, 2004, The retinal conformation and its environment in rhodopsin in light of a new 2.2Å crystal structure, J. Mol. Biol., 342, 571, 10.1016/j.jmb.2004.07.044 Hubbell, 2003, Rhodopsin structure, dynamics and activation, Adv. Protein Chem., 63, 243, 10.1016/S0065-3233(03)63010-X Ruprecht, 2004, Electron crystallography reveals the structure of metarhodopsin I, EMBO J., 23, 3609, 10.1038/sj.emboj.7600374 Kim, 1997, Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state, Proc. Natl. Acad. Sci. USA, 94, 14273, 10.1073/pnas.94.26.14273 Han, 1998, Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6, Biochemistry, 37, 8253, 10.1021/bi980147r Kim, 2004, Structural origins of constitutive activation in rhodopsin: role of the K296/E113 salt bridge, Proc. Natl. Acad. Sci. USA, 101, 12508, 10.1073/pnas.0404519101 Ballesteros, 2001, Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure–function analysis of rhodopsin-like receptors, Mol. Pharmacol., 60, 1, 10.1124/mol.60.1.1 Farrens, 1996, Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin, Science, 274, 768, 10.1126/science.274.5288.768 Gether, 1997, Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor, EMBO J., 16, 6737, 10.1093/emboj/16.22.6737 Jensen, 2001, Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the beta 2 adrenergic receptor mapped by site-selective fluorescent labeling, J. Biol. Chem., 276, 9279, 10.1074/jbc.M004871200 Sheikh, 1999, Similar structures and shared switch mechanisms of the beta2-adrenoceptor and the parathyroid hormone receptor. Zn(II) bridges between helices III and VI block activation, J. Biol. Chem., 274, 17033, 10.1074/jbc.274.24.17033 Sylte, 2001, Ligand induced conformational states of the 5-HT(1A) receptor, Eur. J. Pharmacol., 416, 33, 10.1016/S0014-2999(01)00860-3 Shapiro, 2002, Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6, J. Biol. Chem., 277, 11441, 10.1074/jbc.M111675200 Khorana, 2000, Molecular biology of light transduction by the mammalian photoreceptor, rhodopsin, J. Biomol. Struct. Dyn., 11, 1, 10.1080/07391102.2000.10506598 Elling, 1999, Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor, Proc. Natl. Acad. Sci. USA, 96, 12322, 10.1073/pnas.96.22.12322 Holst, 2000, Partial agonism through a zinc-ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor, Mol. Pharmacol., 58, 263, 10.1124/mol.58.2.263 Porter, 1999, Characteristics for a salt-bridge switch mutation of the alpha(1b) adrenergic receptor. Altered pharmacology and rescue of constitutive activity, J. Biol. Chem., 274, 34535, 10.1074/jbc.274.49.34535 Gerber, 2001, An activation switch in the ligand binding pocket of the C5a receptor, J. Biol. Chem., 276, 3394, 10.1074/jbc.M007748200 Donnelly, 1999, Conserved polar residues in the transmembrane domain of the human tachykinin NK2 receptor: functional roles and structural implications, Biochem. J., 339, 55, 10.1042/bj3390055 Govaerts, 2001, A conserved Asn in transmembrane helix 7 is an on/off switch in the activation of the thyrotropin receptor, J. Biol. Chem., 276, 22991, 10.1074/jbc.M102244200 Miura, 2002, Constitutive activation of angiotensin II type 1 receptor alters the orientation of transmembrane helix-2, J. Biol. Chem., 277, 24299, 10.1074/jbc.M202743200 Crozier, 2003, Molecular dynamics simulation of dark-adapted rhodopsin in an explicit membrane bilayer: coupling between local retinal and larger scale conformational change, J. Mol. Biol., 333, 493, 10.1016/j.jmb.2003.08.045 Borhan, 2000, Movement of retinal along the visual transduction path, Science, 288, 2209, 10.1126/science.288.5474.2209 Nikiforovich, 2003, 3D Model for meta-II rhodopsin, an activated G-protein-coupled receptor, Biochemistry, 42, 9110, 10.1021/bi034586o Dunfield, 1978, Energy parameters in polypeptides. 8. Empirical potential energy algorithm for the conformational analysis of large molecules, J. Phys. Chem., 82, 2609, 10.1021/j100513a014 Nemethy, 1983, Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occuring amino acids, J. Phys. Chem., 87, 1883, 10.1021/j100234a011 Pebay-Peyroula, 1997, X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases, Science, 277, 1676, 10.1126/science.277.5332.1676 Deisenhofer, 1995, Crystallographic refinement at 2.3Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis, J. Mol. Biol., 246, 429, 10.1006/jmbi.1994.0097 Nikiforovich, 1991, Topographical requirements for delta-selective opioid peptides, Biopolymers, 31, 941, 10.1002/bip.360310804 Robinson, 1992, Constitutively active mutants of rhodopsin, Neuron, 9, 719, 10.1016/0896-6273(92)90034-B Rao, 1994, Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness, Nature, 367, 639, 10.1038/367639a0 Rao, 1996, Activating mutations of rhodopsin and other G protein-coupled receptors, Annu. Rev. Biophys. Biomol. Struct., 25, 287, 10.1146/annurev.bb.25.060196.001443 Sakmar, 2002, Rhodopsin: insights from recent structural studies, Annu. Rev. Biophys. Biomol. Struct., 31, 443, 10.1146/annurev.biophys.31.082901.134348 Gross, 2003, Characterization of rhodopsin congenital night blindness mutant T94I, Biochemistry, 42, 2009, 10.1021/bi020613j Jin, 2003, Opsin activation as a cause of congenital night blindness, Nat. Neurosci., 6, 731, 10.1038/nn1070