Effect of alkali metal ions on water structure: insights into the pressure-like effect

Structural Chemistry - Tập 34 - Trang 165-180 - 2022
Abdelkarim Rjiba1, Sahbi El Hog2, Jawhar Jelassi1, Rachida Dorbez-Sridi1
1Laboratoire Physico-Chimie Des Matériaux, Université de Monastir, Monastir, Tunisia
2Laboratoire de La Matière Condensée Et Des Nanosciences (LMCN), Université de Monastir, Monastir, Tunisia

Tóm tắt

This work reports an analysis using the Monte Carlo simulations of the effect of LiCl, NaCl, and KCl salts and high pressures on the structure of water. On the basis of a variety of several parameters connected to various aspects of the tetrahedral local structure of water and the nearest neighbor approach, we present in this paper a detailed comparison between the effect of applied pressure and that of salt concentration increase on the tetrahedral structure of water. The nearest neighbor approach allows us to get information on the radial and orientational characteristic of the non-hydrogen-bonded configuration of water in the presence of salts and under compression. The analysis shows differences between the local structure of water in the presence of ions and that of water under compression. Our findings suggest a revision of the pressure-like effect of ions on water structure. Moreover, compared to LiCl and NaCl salts, a larger effect of KCl salt on the hydrogen bonding of water has been shown.

Tài liệu tham khảo

Chang Z, Li C, Wang Y, Chen B, Fu L, Zhu Y, Zhang L, Wu Y, Huang W (2016) A lithium ion battery using an aqueous electrolyte solution. Sci Rep 6(1):28421. https://doi.org/10.1038/srep28421 Carrillo-Tripp M, Saint-Martin H, Ortega-Blake I (2003) A comparative study of the hydration of Na+ and K+ with refined polarizable model potentials. J Chem Phys 118(15):7062–7073. https://doi.org/10.1063/1.1559673 Mähler J, Persson I (2012) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51(1):425–438. https://doi.org/10.1021/ic2018693 Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK (2007) Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B 111(48):13570–13577. https://doi.org/10.1021/jp075913v Bankura A, Carnevale V, Klein ML (2013) Hydration structure of salt solutions from ab initio molecular dynamics. J Chem Phys 138(1):014501. https://doi.org/10.1063/1.4772761 Chowdhuri S, Chandra A (2003) Hydration structure and diffusion of ions in supercooled water: ion size effects. J Chem Phys 118(21):9719–9725. https://doi.org/10.1063/1.1570405 Harsányi I, Pusztai L (2012) Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data. J Chem Phys 137(20):204503. https://doi.org/10.1063/1.4767437 Frank HS, Wen W-Y (1957) Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc 24:133. https://doi.org/10.1039/df9572400133 Gaiduk AP, Galli G (2017) Local and global effects of dissolved sodium chloride on the structure of water. J Phys Chem Lett 8(7):1496–1502. https://doi.org/10.1021/acs.jpclett.7b00239 Bouazizi S, Nasr S, Jaîdane N, Bellissent-Funel M-C (2006) Local order in aqueous NaCl solutions and pure water: X-ray scattering and molecular dynamics simulations study. J Phys Chem B 110(46):23515–23523. https://doi.org/10.1021/jp0641583 Harsányi I, Temleitner L, Beuneu B, Pusztai L (2012) Neutron and X-ray diffraction measurements on highly concentrated aqueous LiCl solutions. J Mol Liq 165:94–100. https://doi.org/10.1016/j.molliq.2011.10.014 Harsányi I, Pusztai L (2005) On the structure of aqueous LiCl solutions. J Chem Phys 122(12):124512. https://doi.org/10.1063/1.1877192 Megyes T, Bakó I, Bálint S, Grósz T, Radnai T (2006) Ion pairing in aqueous calcium chloride solution: molecular dynamics simulation and diffraction studies. J Mol Liq 129(1–2):63–74. https://doi.org/10.1016/j.molliq.2006.08.013 Zhang Z, Duan Z (2004) Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study. Chem Phys 297(1–3):221–233. https://doi.org/10.1016/j.chemphys.2003.10.030 Pethes I (2018) The structure of aqueous lithium chloride solutions at high concentrations as revealed by a comparison of classical interatomic potential models. J Mol Liq 264:179–197. https://doi.org/10.1016/j.molliq.2018.05.044 Messias A, Da Silva Debora AC, Fileti EE (2022) Salt-in-water and water-in-salt electrolytes: the effects of the asymmetry in cation and anion valence on their properties. Phys Chem Chem Phys. https://doi.org/10.1039/D1CP04259A Chialvo AA, Simonson JM (2003) The structure of CaCl2 aqueous solutions over a wide range of concentration. Interpretation of diffraction experiments via molecular simulation. J Chem Phys 199(15):8052–8061. https://doi.org/10.1063/1.1610443 El Hog S, Rjiba A, Jelassi J, Dorbez-Sridi R (2022) NaCl salt effect on water structure: a Monte Carlo simulation study. Phys Chem Liq 60:767–777 Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK (2007) Perturbation of water structure due to monovalent ions in solution. Phys Chem Chem Phys 9(23):2959. https://doi.org/10.1039/b701855j Leberman R, Soper AK (1995) Effect of high salt concentrations on water structure. Nature 378(6555):364–366. https://doi.org/10.1038/378364a0 Chandra A (2000) Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys Rev Lett 85(4):768–771. https://doi.org/10.1103/PhysRevLett.85.768 Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Influence of ions on the hydrogen-bond structure in liquid water. J Chem Phys 119(23):12457–12461. https://doi.org/10.1063/1.1623746 1.Rjiba A, El Hog S, Jelassi J, Garbouj H, Dorbez-Sridi R (2021) Local structure in lithium chloride solution: a Monte-Carlo simulation study. Mol Simul 47:1121–1134 Li F, Yuan J, Li D, Li S, Han Z (2015) Study on the structure of aqueous potassium chloride solutions using the X-Ray diffraction and Raman spectroscopy methods. J Mol Struct 1081:38–43. https://doi.org/10.1016/j.molstruc.2014.09.062 Elbers M, Schmidt C, Sternemann C, Sahle CJ, Jahn S, Albers C, Sakrowski R, Gretarsson H, Sundermann M, Tolan M, Wilke M (2021) Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water. Phys Chem Chem Phys 23(27):14845–14856. https://doi.org/10.1039/D1CP01490K Polidori A, Rowlands RF, Zeidler A, Salanne M, Fischer HE, Annighöfer B, Klotz S, Salmon PS (2021) Structure and dynamics of aqueous NaCl solutions at high temperatures and pressures. J Chem Phys 155(19):194506. https://doi.org/10.1063/5.0067166 Demmel F (2021) Structural relaxation in the aqueous solution LiCl ⋅ 6D2O by quasielastic neutron scattering. J Mol Liq 332:115915. https://doi.org/10.1016/j.molliq.2021.115915 Botti A, Bruni F, Imberti S, Ricci MA, Soper AK (2004) Ions in water: the microscopic structure of concentrated NaOH solutions. J Chem Phys 120(21):10154–10162. https://doi.org/10.1063/1.1705572 Zhang C, Yue S, Panagiotopoulos AZ, Klein ML, Wu X (2022) Dissolving salt is not equivalent to applying a pressure on water. Nat Commun 13(1):822. https://doi.org/10.1038/s41467-022-28538-8 Izadi S, Anandakrishnan R, Onufriev AV (2014) Building water models: a different approach. J Phys Chem Lett 5(21):3863–3871. https://doi.org/10.1021/jz501780a Jensen KP, Jorgensen WL (2006) Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J Chem Theory Comput 2(6):1499–1509. https://doi.org/10.1021/ct600252r Romankiw LA, Chou M (1983) Densities of aqueous sodium chloride, potassium chloride, magnesium chloride, and calcium chloride binary solutions in the concentration range 0.5–6.1 m at 25, 30, 35, 40, and 45.degree. C J Chem Eng Data 28(3):300–305. https://doi.org/10.1021/je00033a005 Errington JR, Debenedetti PG (2001) Relationship between structural order and the anomalies of liquid water. Nature 409(6818):318–321. https://doi.org/10.1038/35053024 Idrissi A, Gerard M, Damay P, Kiselev M, Puhovsky Y, Cinar E, Lagant P, Vergoten G (2010) The effect of urea on the structure of water: a molecular dynamics simulation. J Phys Chem B 114(13):4731–4738. https://doi.org/10.1021/jp911939y Saitta AM, Strässle T, Rousse G, Hamel G, Klotz S, Nelmes RJ, Loveday JS (2004) High density amorphous ices: disordered water towards close packing. J Chem Phys 121(17):8430. https://doi.org/10.1063/1.1804493 Gallo P, Corradini D, Rovere M (2011) Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: a test of the structure making and breaking concept. Phys Chem Chem Phys 13(44):19814. https://doi.org/10.1039/c1cp22166c Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93(3):1157–1204. https://doi.org/10.1021/cr00019a014 Spångberg D, Hermansson K (2003) Effective three-body potentials for Li+(Aq) and Mg2+(Aq). J Chem Phys 119(14):7263–7281. https://doi.org/10.1063/1.1604372 Bouazizi S, Nasr S (2007) Local order in aqueous lithium chloride solutions as studied by X-ray scattering and molecular dynamics simulations. J Mol Struct 837(1–3):206–213. https://doi.org/10.1016/j.molstruc.2006.10.017 Tóth G (1996) Ab initio pair potential parameter set for the interaction of a rigid and a flexible water model and the complete series of the halides and alkali cations. J Chem Phys 105(13):5518–5524. https://doi.org/10.1063/1.472392 Spångberg D, Hermansson K (2004) Many-body potentials for aqueous Li+, Na+, Mg2+, and Al3+: comparison of effective three-body potentials and polarizable models. J Chem Phys 120(10):4829–4843. https://doi.org/10.1063/1.1641191 Impey RW, Madden PA, McDonald IR (1983) Hydration and mobility of ions in solution. J Phys Chem 87(25):5071–5083. https://doi.org/10.1021/j150643a008 Overduin SD, Patey GN (2012) Understanding the structure factor and isothermal compressibility of ambient water in terms of local structural environments. J Phys Chem B 116(39):12014–12020. https://doi.org/10.1021/jp3075749 Sedlmeier F, Horinek D, Netz RR (2011) Spatial correlations of density and structural fluctuations in liquid water: a comparative simulation study. J Am Chem Soc 133(5):1391–1398. https://doi.org/10.1021/ja1064137 Gorbaty YuE, Demianets YuN (1985) An X-ray study of the effect of pressure on the structure of liquid water. Mol Phys 55(3):571–588. https://doi.org/10.1080/00268978500101551 Okhulkov AV, Demianets YN, Gorbaty YE (1994) X-ray scattering in liquid water at pressures of up to 7.7 Kbar: test of a fluctuation model. J Chem Phys 100(2):1578–1588. https://doi.org/10.1063/1.466584 Bandyopadhyay D, Mohan S, Ghosh SK, Choudhury N (2013) Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water. J Phys Chem B 117(29):8831–8843. https://doi.org/10.1021/jp404478y