Molecular chaperones as essential mediators of mitochondrial biogenesis
Tài liệu tham khảo
Bukau, 1998, The Hsp70 and Hsp60 chaperone machines, Cell, 92, 351, 10.1016/S0092-8674(00)80928-9
Netzer, 1998, Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms, Trends Biochem. Sci., 23, 68, 10.1016/S0968-0004(97)01171-7
Hartl, 1996, Molecular chaperones in cellular protein folding, Nature, 381, 571, 10.1038/381571a0
Jakob, 1994, Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones, Trends Biochem. Sci., 19, 205, 10.1016/0968-0004(94)90023-X
Schirmer, 1996, HSP100/Clp proteins: a common mechanism explains diverse functions, Trends Biochem. Sci., 21, 289, 10.1016/0968-0004(96)10038-4
Rassow, 1997, Molecular chaperones: towards a characterization of the heat-shock protein 70 family, Trends Cell Biol., 7, 129, 10.1016/S0962-8924(96)10056-8
Craig, 1987, SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth, Proc. Natl. Acad. Sci. U. S. A., 84, 4156, 10.1073/pnas.84.12.4156
von Ahsen, 1995, The mitochondrial protein import machinery. Role of ATP in dissociation of the Hsp70.Mim44 complex, J. Biol. Chem., 270, 29848, 10.1074/jbc.270.50.29848
Mayer, 2000, Molecular basis for interactions of the DnaK chaperone with substrates, Biol. Chem., 381, 877, 10.1515/BC.2000.109
Rassow, 1990, Polypeptides traverse the mitochondrial envelope in an extended state, FEBS Lett., 275, 190, 10.1016/0014-5793(90)81469-5
Schwartz, 1999, The structure of precursor proteins during import into mitochondria, J. Biol. Chem., 274, 12759, 10.1074/jbc.274.18.12759
Schwartz, 1999, The dimensions of the protein import channels in the outer and inner mitochondrial membranes, Proc. Natl. Acad. Sci. U. S. A., 96, 13086, 10.1073/pnas.96.23.13086
Kübrich, 1995, Genetic and biochemical dissection of the mitochondrial protein-import machinery, Curr. Genet., 27, 393, 10.1007/BF00311207
Scherer, 1990, A precursor protein partly translocated into yeast mitochondria is bound to a 70 kD mitochondrial stress protein, EMBO J., 9, 4315, 10.1002/j.1460-2075.1990.tb07880.x
Gambill, 1993, A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins, J. Cell Biol., 123, 109, 10.1083/jcb.123.1.109
Geissler, 2000, Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome b(2) modulates the deltapsi-dependence of translocation of the matrix-targeting sequence, Mol. Biol. Cell, 11, 3977, 10.1091/mbc.11.11.3977
Martin, 1991, Role of an energized inner membrane in mitochondrial protein import, J. Biol. Chem., 266, 18051, 10.1016/S0021-9258(18)55235-2
Wachter, 1994, Protein import into mitochondria: the requirement for external ATP is precursor-specific whereas intramitochondrial ATP is universally needed for translocation into the matrix, Mol. Biol. Cell, 5, 465, 10.1091/mbc.5.4.465
Cyr, 1993, A matrix ATP requirement for presequence translocation across the inner membrane of mitochondria, J. Biol. Chem., 268, 23751, 10.1016/S0021-9258(20)80443-8
Voos, 1993, Presequence and mature part of preproteins strongly influence the dependence of mitochondrial protein import on heat shock protein 70 in the matrix, J. Cell Biol., 123, 119, 10.1083/jcb.123.1.119
Stuart, 1994, The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space, Eur. J. Biochem., 220, 9, 10.1111/j.1432-1033.1994.tb18593.x
Bömer, 1997, Multiple interactions of components mediating preprotein translocation across the inner mitochondrial membrane, EMBO J., 16, 2205, 10.1093/emboj/16.9.2205
Bolliger, 1994, A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability, EMBO J., 13, 1998, 10.1002/j.1460-2075.1994.tb06469.x
Nakai, 1994, Yge1p, a eukaryotic GrpE-homolog, is localized in the mitochondrial matrix and interacts with mitochondrial hsp70, Biochim. Biophys. Res. Commun., 200, 435, 10.1006/bbrc.1994.1468
Miao, 1997, Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae, J. Mol. Biol., 265, 541, 10.1006/jmbi.1996.0762
Dekker, 1997, Role of mitochondrial GrpE and phosphate in the ATPase cycle of matrix Hsp70, J. Mol. Biol., 270, 321, 10.1006/jmbi.1997.1131
Laloraya, 1995, Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of preproteins, Mol. Cell. Biol., 15, 7098, 10.1128/MCB.15.12.7098
Laloraya, 1994, A role for a eukaryotic GrpE-related protein Mge1p, in protein translocation, Proc. Natl. Acad. Sci. U. S. A., 91, 6481, 10.1073/pnas.91.14.6481
Westermann, 1995, The role of the GrpE homologue, Mge1p, in mediating protein import and protein folding in mitochondria, EMBO J., 14, 3452, 10.1002/j.1460-2075.1995.tb07351.x
Voos, 1994, Mitochondrial GrpE is present in a complex with hsp70 and preproteins in transit across membranes, Mol. Cell. Biol., 14, 6627, 10.1128/MCB.14.10.6627
Schneider, 1996, The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70–Tim44 interaction driving mitochondrial protein import, EMBO J., 15, 5796, 10.1002/j.1460-2075.1996.tb00966.x
Maarse, 1992, MPI1, an essential gene encoding a mitochondrial membrane protein, is possibly involved in protein import into yeast mitochondria, EMBO J., 11, 3619, 10.1002/j.1460-2075.1992.tb05446.x
Scherer, 1992, Identification of a 45-kDa protein import site of the yeast mitochondrial inner membrane, Proc. Natl. Acad. Sci. U. S. A., 89, 11930, 10.1073/pnas.89.24.11930
Blom, 1993, The essential yeast protein MIM44 (encoded by MPI1) is involved in an early step of preprotein translocation across the mitochondrial inner membrane, Mol. Cell. Biol., 13, 7364, 10.1128/MCB.13.12.7364
Weiss, 1999, Domain structure and lipid interaction of recombinant yeast Tim44, Proc. Natl. Acad. Sci. U. S. A., 96, 8890, 10.1073/pnas.96.16.8890
Rassow, 1994, Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44, J. Cell Biol., 127, 1547, 10.1083/jcb.127.6.1547
Kronidou, 1994, Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of the yeast mitochondrial inner membrane, Proc. Natl. Acad. Sci. U. S. A., 91, 12818, 10.1073/pnas.91.26.12818
Schneider, 1994, Mitochondrial Hsp70/MIM44 complex facilitates protein import, Nature, 371, 768, 10.1038/371768a0
Lyman, 1995, Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces cerevisiae, J. Cell Biol., 131, 1163, 10.1083/jcb.131.5.1163
Merlin, 1999, The J-related segment of Tim44 is essential for cell viability: a mutant Tim44 remains in the mitochondrial import site, but inefficiently recruits mtHsp70 and impairs protein translocation, J. Cell Biol., 145, 961, 10.1083/jcb.145.5.961
Horst, 1996, The mitochondrial protein import motor: dissociation of mitochondrial hsp70 from its membrane anchor requires ATP binding rather than ATP hydrolysis, Protein Sci., 5, 759, 10.1002/pro.5560050421
Voos, 1996, Differential requirement for the mitochondrial Hsp70–Tim44 complex in unfolding and translocation of preproteins, EMBO J., 15, 2668, 10.1002/j.1460-2075.1996.tb00627.x
Kang, 1990, Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins, Nature, 348, 137, 10.1038/348137a0
Krimmer, 2000, Mitochondrial protein import motor: the ATPase domain of matrix Hsp70 is crucial for binding to Tim44, while the peptide binding domain and the carboxy-terminal segment play a stimulatory role, Mol. Cell. Biol., 20, 5879, 10.1128/MCB.20.16.5879-5887.2000
Strub, 2002, The Hsp70 peptide-binding domain determines the interaction of the ATPase domain with Tim44 in mitochondria, EMBO J., 21, 2626, 10.1093/emboj/21.11.2626
Ungermann, 1996, The delta psi- and Hsp70/MIM44-dependent reaction cycle driving early steps of protein import into mitochondria, EMBO J., 15, 735, 10.1002/j.1460-2075.1996.tb00409.x
Bömer, 1998, Separation of structural and dynamic functions of the mitochondrial translocase: Tim44 is crucial for the inner membrane import sites in translocation of tightly folded domains, but not of loosely folded preproteins, EMBO J., 17, 4226, 10.1093/emboj/17.15.4226
Simon, 1992, What drives the translocation of proteins?, Proc. Natl. Acad. Sci. U. S. A., 89, 3770, 10.1073/pnas.89.9.3770
Ungermann, 1994, The role of hsp70 in conferring unidirectionality on protein translocation, Science, 266, 1250, 10.1126/science.7973708
Milisav, 2001, Modular structure of the TIM23 preprotein translocase of mitochondria, J. Biol. Chem., 276, 25856, 10.1074/jbc.M102132200
Bauer, 2000, Protein translocation into mitochondria: the role of TIM complexes, Trends Cell Biol., 10, 25, 10.1016/S0962-8924(99)01684-0
Geissler, 2001, Mitochondrial import driving forces: enhanced trapping by matrix hsp70 stimulates translocation and reduces the membrane potential dependence of loosely folded preproteins, Mol. Cell. Biol., 21, 7097, 10.1128/MCB.21.20.7097-7104.2001
Glick, 1995, Can Hsp70 proteins act as force-generating motors?, Cell, 80, 11, 10.1016/0092-8674(95)90444-1
Pfanner, 1995, Protein sorting: pulling in the proteins, Curr. Biol., 5, 132, 10.1016/S0960-9822(95)00033-9
Ebel, 1999, A conserved domain in Escherichia coli Lon protease is involved in substrate discriminator activity, J. Bacteriol., 181, 2236, 10.1128/JB.181.7.2236-2243.1999
Stan, 2000, Recognition of preproteins by the isolated TOM complex of mitochondria, EMBO J., 19, 4895, 10.1093/emboj/19.18.4895
Huang, 2000, Effect of the protein import machinery at the mitochondrial surface on precursor stability, Proc. Natl. Acad. Sci. U. S. A., 97, 12991, 10.1073/pnas.230243097
Glick, 1993, Import of cytochrome b2 to the mitochondrial intermembrane space: the tightly folded heme-binding domain makes import dependent upon matrix ATP, Protein Sci., 2, 1901, 10.1002/pro.5560021112
Gaume, 1998, Unfolding of preproteins upon import into mitochondria, EMBO J., 17, 6497, 10.1093/emboj/17.22.6497
Huang, 1999, Mitochondria unfold precursor proteins by unraveling them from their N-termini, Nat. Struct. Biol., 6, 1132, 10.1038/70073
Lim, 2001, The mitochondrial Hsp70-dependent import system actively unfolds preproteins and shortens the lag phase of translocation, EMBO J., 20, 941, 10.1093/emboj/20.5.941
Matouschek, 1997, Active unfolding of precursor proteins during mitochondrial protein import, EMBO J., 16, 6727, 10.1093/emboj/16.22.6727
Eilers, 1986, Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria, Nature, 322, 228, 10.1038/322228a0
Voisine, 1999, The protein import motor of mitochondria: unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70, Cell, 97, 565, 10.1016/S0092-8674(00)80768-0
Matouschek, 2000, Protein unfolding by mitochondria. The Hsp70 import motor, EMBO Rep., 1, 404, 10.1093/embo-reports/kvd093
Herrmann, 1994, Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA, J. Cell Biol., 127, 893, 10.1083/jcb.127.4.893
Rowley, 1994, Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding, Cell, 77, 249, 10.1016/0092-8674(94)90317-4
Westermann, 1997, Mdj2p, a novel DnaJ homolog in the mitochondrial inner membrane of the yeast Saccharomyces cerevisiae, J. Mol. Biol., 272, 477, 10.1006/jmbi.1997.1267
Prip-Buus, 1996, Role of the mitochondrial DnaJ homologue, Mdj1p, in the prevention of heat-induced protein aggregation, FEBS Lett., 380, 142, 10.1016/0014-5793(96)00049-X
Horst, 1997, Sequential action of two hsp70 complexes during protein import into mitochondria, EMBO J., 16, 1842, 10.1093/emboj/16.8.1842
Kubo, 1999, Two distinct mechanisms operate in the reactivation of heat-denatured proteins by the mitochondrial Hsp70/Mdj1p/Yge1p chaperone system, J. Mol. Biol., 286, 447, 10.1006/jmbi.1998.2465
Duchniewicz, 1999, Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast, Mol. Cell. Biol., 19, 8201, 10.1128/MCB.19.12.8201
Baumann, 2000, Ecm10, a novel Hsp70 homolog in the mitochondrial matrix of the yeast Saccharomyces cerevisiae, FEBS Lett., 487, 307, 10.1016/S0014-5793(00)02364-4
Schilke, 1996, The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA, J. Cell Biol., 134, 603, 10.1083/jcb.134.3.603
Knight, 1998, Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis, J. Biol. Chem., 273, 18389, 10.1074/jbc.273.29.18389
Lutz, 2001, The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria, J. Mol. Biol., 307, 815, 10.1006/jmbi.2001.4527
Muhlenhoff, 2000, Biogenesis of iron–sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria, Biochim. Biophys. Acta, 1459, 370, 10.1016/S0005-2728(00)00174-2
Schilke, 1999, Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 96, 10206, 10.1073/pnas.96.18.10206
Voisine, 2000, Role of the mitochondrial Hsp70s, Ssc1 and Ssq1, in the maturation of Yfh1, Mol. Cell. Biol., 20, 3677, 10.1128/MCB.20.10.3677-3684.2000
Schmidt, 2001, The two mitochondrial heat shock proteins 70, Ssc1 and Ssq1, compete for the cochaperone Mge1, J. Mol. Biol., 313, 13, 10.1006/jmbi.2001.5013
Strain, 1998, Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron–sulfur cluster assembly, J. Biol. Chem., 273, 31138, 10.1074/jbc.273.47.31138
Voisine, 2001, Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 98, 1483, 10.1073/pnas.98.4.1483
Kim, 2001, J-domain protein, Jac1p, of yeast mitochondria required for iron homeostasis and activity of Fe–S cluster proteins, J. Biol. Chem., 276, 17524, 10.1074/jbc.M010695200
Martin, 1997, Molecular chaperones and mitochondrial protein folding, J. Bioenerg. Biomembranes, 29, 35, 10.1023/A:1022407705182
Sigler, 1998, Structure and function in GroEL-mediated protein folding, Annu. Rev. Biochem., 67, 581, 10.1146/annurev.biochem.67.1.581
Xu, 1997, The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex, Nature, 388, 741, 10.1038/41944
Lubben, 1990, Identification of a groES-like chaperonin in mitochondria that facilitates protein folding, Proc. Natl. Acad. Sci. U. S. A., 87, 7683, 10.1073/pnas.87.19.7683
Rospert, 1993, Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES, FEBS Lett., 335, 358, 10.1016/0014-5793(93)80419-U
Fenton, 1996, Putting a lid on protein folding: structure and function of the co-chaperonin, GroES, Chem. Biol., 3, 157, 10.1016/S1074-5521(96)90257-4
Martin, 1993, The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding, Nature, 366, 228, 10.1038/366228a0
Cheng, 1989, Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria, Nature, 337, 620, 10.1038/337620a0
Ostermann, 1989, Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis, Nature, 341, 125, 10.1038/341125a0
Heyrovska, 1998, Directionality of polypeptide transfer in the mitochondrial pathway of chaperone-mediated protein folding, Biol. Chem., 379, 301, 10.1515/bchm.1998.379.3.301
Dubaquie, 1998, Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10, EMBO J., 17, 5868, 10.1093/emboj/17.20.5868
Rospert, 1996, Hsp60-independent protein folding in the matrix of yeast mitochondria, EMBO J., 15, 764, 10.1002/j.1460-2075.1996.tb00412.x
Manning-Krieg, 1991, Sequential action of mitochondrial chaperones in protein import into mitochondria, EMBO J., 10, 3273, 10.1002/j.1460-2075.1991.tb04891.x
Matouschek, 1995, Cyclophilin catalyzes protein folding in yeast mitochondria, Proc. Natl. Acad. Sci. U. S. A., 92, 6319, 10.1073/pnas.92.14.6319
Rassow, 1995, Cyclophilin 20, is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60, Mol. Cell. Biol., 15, 2654, 10.1128/MCB.15.5.2654
von Ahsen, 1997, The chaperonin cycle cannot substitute for prolyl isomerase activity, but GroEL alone promotes productive folding of a cyclophilin-sensitive substrate to a cyclophilin-resistant form, EMBO J., 16, 4568, 10.1093/emboj/16.15.4568
Horwich, 1995, Molecular chaperones. Resurrection or destruction?, Curr. Biol., 5, 455, 10.1016/S0960-9822(95)00089-3
Goloubinoff, 1999, Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network, Proc. Natl. Acad. Sci. U. S. A., 96, 13732, 10.1073/pnas.96.24.13732
Zolkiewski, 1999, ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli, J. Biol. Chem., 274, 28083, 10.1074/jbc.274.40.28083
Lindquist, 1996, Heat-shock protein 104 expression is sufficient for thermotolerance in yeast, Proc. Natl. Acad. Sci. U. S. A., 93, 5301, 10.1073/pnas.93.11.5301
Parsell, 1994, Protein disaggregation mediated by heat-shock protein Hsp104, Nature, 372, 475, 10.1038/372475a0
Leonhardt, 1993, HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases, Mol. Cell. Biol., 13, 6304, 10.1128/MCB.13.10.6304
Schmitt, 1995, Hsp78, a Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70, EMBO J., 14, 3434, 10.1002/j.1460-2075.1995.tb07349.x
Moczko, 1995, The mitochondrial ClpB homolog Hsp78 cooperates with matrix Hsp70 in maintenance of mitochondrial function, J. Mol. Biol., 254, 538, 10.1006/jmbi.1995.0636
Schmitt, 1996, The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria, J. Cell Biol., 134, 1375, 10.1083/jcb.134.6.1375
Krzewska, 2001, Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding, FEBS Lett., 489, 92, 10.1016/S0014-5793(00)02423-6
van Dyck, 1998, Mcx1p, a ClpX homologue in mitochondria of Saccharomyces cerevisiae, FEBS Lett., 438, 250, 10.1016/S0014-5793(98)01310-6
Corydon, 1998, A human homologue of Escherichia coli ClpP caseinolytic protease: recombinant expression, intracellular processing and subcellular localization, Biochem. J., 331, 309, 10.1042/bj3310309
Langer, 2000, AAA proteases: cellular machines for degrading membrane proteins, Trends Biochem. Sci., 25, 247, 10.1016/S0968-0004(99)01541-8