Pollen-monitoring: between analyst proficiency testing
Tóm tắt
This study presents the results of a Europe-wide training and Quality Control (QC) exercise carried out within the framework of the European Aerobiology Society’s QC Working Group and European COST Action FA1203 entitled “sustainable management of Ambrosia artemisiifolia in Europe (SMARTER)” with the aim of ensuring that pollen counters in Europe are confident in the identification of Ambrosia pollen grains. A total of 69 analysts from 20 countries examined a test slide by light microscopy, which contained Ambrosia pollen and pollen from other Asteraceae that could be recorded in the atmosphere at the same time of year (i.e. Artemisia, Iva, and Xanthium). Daily average pollen concentrations produced by individual participants were compared with the assigned value and the bias was measured by z-score. Both the assigned value and standard deviation for proficiency testing were calculated following the consensus value principle (ISO13528:2005) from the results reported by all the participants in the test. It took a total of 531 days from when the exercise commenced until all 69 analysts reported their results. The most outliers were reported for Artemisia pollen concentrations followed by Xanthium and Iva. The poor results for Artemisia and Xanthium were probably caused by low concentrations on the test slide leading to larger bias due to the unequal distribution of pollen over the microscope slide. Participants performed the best in identifying and quantifying Ambrosia pollen. Performing inter-laboratory ring tests with the same sample is very time consuming and might not be appropriate for large-scale proficiency testing in aerobiology. Pollen with similar morphology should be included in the education process of aerobiologists.
Tài liệu tham khảo
Bonini, M., Šikoparija, B., Prentović, M., Cislaghi, G., Colombo, P., Testoni, C., et al. (2015a). Is the recent decrease in airborne Ambrosia pollen in the Milan area due to the accidental introduction of the ragweed leaf beetle Ophraella communa? Aerobiologia, 31(4), 499–513.
Bonini, M., Šikoparija, B., Prentović, M., Cislaghi, G., Colombo, P., Testoni, C., et al. (2016). A follow-up study examining airborne Ambrosia pollen in the Milan area in 2014 in relation to the accidental introduction of the ragweed leaf beetle Ophraella communa. Aerobiologia, 32, 371–374. doi:10.1007/s10453-015-9406-2.
Buters, J. T., Weichenmeier, M. I., Ochs, S., Pusch, G., Kreyling, W., Boere, A. J. F., et al. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65, 850–858.
Chapman, D. S., Makra, L., Albertini, R., Bonini, M., Páldy, A., Rodinkova, V., et al. (2016). Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Global Change Biology,. doi:10.1111/gcb.13220.
Essl, F., Biró, K., Brandes, D., Broennimann, O., Bullock, J. M., Chapman, D. S., et al. (2015). Biological flora of the British Isles: Ambrosia artemisiifolia. Journal of Ecology, 104(4), 1069–1098.
Follak, S., Dullinger, S., Kleinbauer, I., Moser, D., & Essl, F. (2013). Invasion dynamics of three allergenic invasive Asteraceae (Ambrosia trifida, Artemisia annua, Iva xanthiifolia) in central and eastern Europe. Preslia, 85(1), 41–61.
Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395.
Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.
ISO13528. (2005). Statistical methods for use in proficiency testing by interlaboratory comparisons.
ISO17025. (2005). General requirements for the competence of testing and calibration laboratories.
ISO5725. (1994). Accuracy (trueness and precision) of measurement methods and results.
Kalinovych, N., Stach, A., Chernetsky, M., Uruska, A., Nowak, M., & Szymanska, A. (2007). Comparative characteristics of pollen fall of allergenic plants in Wielkapolska region (Poland) and Lviv city (Ukraine). Studia Biologica, 1(1), 73–84.
Karrer, G., Skjøth, C. A., Šikoparija, B., Smith, M., Berger, U., & Essl, F. (2015). Ragweed (Ambrosia) pollen source inventory for Austria. Science of the Total Environment, 523, 120–128.
Konieczka, P., & Namiesnik, J. (2009). Quality assurance and Quality Control in the analytical chemical laboratory: A practical approach. Boca Raton: CRC.
Oteros, J., Galán, C., Alcázar, P., & Domínguez-Vilches, E. (2013). Quality Control in bio-monitoring networks, Spanish aerobiology network. Science of the Total Environment, 443, 559–565.
Pearson, R. K. (2002). Outliers in process modeling and identification. IEEE Transactions on Control Systems Technology, 10, 55–63.
Punt, W., & Hoen, P. P. (2009). The Northwest European Pollen Flora, 70. Asteraceae—Asteroideae. Review of Palaeobotany and Palynology, 157(1–2), 22–183.
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.
Šikoparija, B., Radišić, P., Pejak, T., & Šimić, S. (2006). Airborne grass and ragweed pollen in the southern Panonnian Valley—consideration of rural and urban environment. Annals of Agricultural and Environmental Medicine, 13, 263–266.
Skjøth, C. A., Šikoparija, B., Jäger, S., & EAN. (2013). Pollen Sources. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen (pp. 9–27). Amsterdam: Springer.
Skjøth, C. A., Smith, M., Sikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150, 1203–1210.
Smith, M., Cecchi, L., Skjoth, C. A., Karrer, G., & Sikoparija, B. (2013). Common ragweed: A threat to environmental health in Europe. Environment International, 61, 115–126.
Thibaudon, M., Šikoparija, B., Oliver, G., Smith, M., & Skjøth, C. A. (2014). Ragweed pollen source inventory for France—the second largest centre of Ambrosia in Europe. Atmospheric Environment, 83, 62–71.
Thompson, M., Ellison, S. L., & Wood, R. (2006). The international harmonized protocol for the proficiency testing of analytical chemistry laboratories (IUPAC Technical Report). Pure and Applied Chemistry, 78(1), 145–196.
Tormo Molina, R., Maya Manzano, J. M., Fernández Rodríguez, S., Gonzalo Garijo, Á., & Silva Palacios, I. (2013). Influence of environmental factors on measurements with Hirst spore traps. Grana, 52(1), 59–70.
Velasco-Jiménez, M. J., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia, 29, 113–120.
Weber, R. W. (2008). Guidelines for using pollen cross-reactivity in formulating allergen immunotherapy. Journal of Allergy and Clinical Immunology, 122(1), 219–221.
Weryszko-Chmielewska, E., Potrowska, K., & Czerneckyj, M. (2003). Pylek ambrozji [Ambrosia] i iwy [Iva] w powietrzu Lublina i Lwowa (Ambrosia and Iva pollen in the air of Lublin and Lvov). Annales Universitatis Mariae Curie-Skłodowska. Sectio EEE: Horticultura, 13, 341–348.
Wodehouse, R. P. (1965). Pollen grains. Their structure, identification and significance in science and medicine. New York: Hafner Publ. Company.