Flow boiling phenomena in a single annular flow regime in microchannels (I): Characterization of flow boiling heat transfer
Tài liệu tham khảo
Agostini, 2007, State of the art of high heat flux cooling technologies, Heat Transf. Eng., 28, 258, 10.1080/01457630601117799
Thome, 2004, Boiling in microchannels: a review of experiment and theory, Int. J. Heat Fluid Flow, 25, 128, 10.1016/j.ijheatfluidflow.2003.11.005
Thome, 2006, State-of-the-art overview of boiling and two-phase flows in microchannels, Heat Transf. Eng., 27, 4, 10.1080/01457630600845481
Cheng, 2009, Recent work on boiling and condensation in microchannels, J. Heat Transfer, 131, 043211, 10.1115/1.3072906
Royne, 2005, Cooling of photovoltaic cells under concentrated illumination: a critical review, Solar Energy Mater. Solar Cells, 86, 451, 10.1016/j.solmat.2004.09.003
Luo, 2007, A microjet array cooling system for thermal management of high-brightness LEDs, IEEE Trans. Adv. Packag., 30, 475, 10.1109/TADVP.2007.898522
Jensen, 2001, Microreaction engineering – is small better?, Chem. Eng. Sci., 56, 293, 10.1016/S0009-2509(00)00230-X
Kobayashi, 2004, A microfluidic device for conducting gas–liquid–solid hydrogenation reactions, Science, 304, 1305, 10.1126/science.1096956
Shui, 2008, Multiphase flow in lab on chip devices: a real tool for the future, Lab Chip, 8, 1010, 10.1039/b808974b
Hartman, 2009, Microchemical systems for continuous-flow synthesis, Lab Chip, 9, 2495, 10.1039/b906343a
Harirchian, 2011, Boiling heat transfer and flow regimes in microchannels – a comprehensive understanding, J. Electron. Packag., 133, 011001, 10.1115/1.4002721
Hailei, 2010, Enhanced boiling heat transfer in parallel microchannels with diffusion brazed wire mesh, IEEE Trans. Compon. Packag. Technol., 33, 784, 10.1109/TCAPT.2010.2070799
Kandlikar, 2006, Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites, J. Heat Transfer, 128, 389, 10.1115/1.2165208
Zhang, 2009, Ledinegg instability in microchannels, Int. J. Heat Mass Transf., 52, 5661, 10.1016/j.ijheatmasstransfer.2009.09.008
Wang, 2008, Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels, Int. J. Heat Mass Transf., 51, 2267, 10.1016/j.ijheatmasstransfer.2007.08.027
Wojtan, 2006, Investigation of saturated critical heat flux in a single, uniformly heated microchannel, Exp. Therm. Fluid Sci., 30, 765, 10.1016/j.expthermflusci.2006.03.006
Vafaei, 2010, Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel, J. Heat Transfer, 132, 102404, 10.1115/1.4001629
Hsieh, 2012, Correlation of critical heat flux and two-phase friction factor for subcooled convective boiling in structured surface microchannels, Int. J. Heat Mass Transf., 55, 32, 10.1016/j.ijheatmasstransfer.2011.08.036
Kosar, 2005, Boiling heat transfer in rectangular microchannels with reentrant cavities, Int. J. Heat Mass Transf., 48, 4867, 10.1016/j.ijheatmasstransfer.2005.06.003
Morshed, 2012, Enhanced flow boiling in a microchannel with integration of nanowires, Appl. Therm. Eng., 32, 68, 10.1016/j.applthermaleng.2011.08.031
Singh, 2010, Flow boiling enhancement on a horizontal heater using carbon nanotube coatings, Int. J. Heat Fluid Flow, 31, 201, 10.1016/j.ijheatfluidflow.2009.11.002
Li, 2012, Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires, Nano Lett.
Kosar, 2006, Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors, J. Heat Transf.-Trans. ASME, 128, 251, 10.1115/1.2150837
Krishnamurthy, 2010, Flow boiling heat transfer on micro pin fins entrenched in a microchannel, J. Heat Transfer, 132, 041007, 10.1115/1.4000878
Guo, 2011, Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces, Appl. Therm. Eng., 31, 2042, 10.1016/j.applthermaleng.2011.03.017
Liu, 2010, Active control of flow and heat transfer in silicon microchannels, J. Micromech. Microeng., 20, 10.1088/0960-1317/20/4/045006
Xu, 2009, Seed bubbles stabilize flow and heat transfer in parallel microchannels, Int. J. Multiph. Flow, 35, 773, 10.1016/j.ijmultiphaseflow.2009.03.008
Kandlikar, 2002, Fundamental issues related to flow boiling in minichannels and microchannels, Exp. Thermal Fluid Sci., 26, 389, 10.1016/S0894-1777(02)00150-4
Yang, 2013, Enhanced flow boiling in microchannels by self-sustained high frequency two-phase oscillations, Int. J. Heat Mass Transf., 58, 402, 10.1016/j.ijheatmasstransfer.2012.11.057
Yang, 2012, High frequency microbubble-switched oscillations modulated by microfluidic transistors, Appl. Phys. Lett., 101, 10.1063/1.4745782
Losey, 2002, Design and fabrication of microfluidic devices for multiphase mixing and reaction, J. Microelectromech. Syst., 11, 709, 10.1109/JMEMS.2002.803416
Kuo, 2008, Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities, J. Heat Transf.-Trans. ASME, 130, 10.1115/1.2908431
Chandrasekaran, 2004, Effect of microfabrication processes on surface roughness parameters of silicon surfaces, Surf. Coat. Technol., 188–189, 581, 10.1016/j.surfcoat.2004.07.015
Kuo, 2006, Bubble dynamics during boiling in enhanced surface microchannels, J. Microelectromech. Syst., 15, 1514, 10.1109/JMEMS.2006.885975
Li, 2008, Dynamic characteristics of transient boiling on a square platinum microheater under millisecond pulsed heating, Int. J. Heat Mass Transf., 51, 273, 10.1016/j.ijheatmasstransfer.2007.03.045
Cao, 2011, Experiment investigation of R134a flow boiling process in microchannel with cavitation structure, Heat Transf. Eng., 32, 542, 10.1080/01457632.2010.506397
Kubo, 1999, Effects of size and number density of micro-reentrant cavities on boiling heat transfer from a silicon chip immersed in degassed and gas-dissolved FC-72, J. Enhanced Heat Transf., 6, 151, 10.1615/JEnhHeatTransf.v6.i2-4.80
Chen, 2009, Nanowires for enhanced boiling heat transfer, Nano Lett., 9, 548, 10.1021/nl8026857
Li, 2008, Nanostructured copper interfaces for enhanced boiling, Small, 4, 1084, 10.1002/smll.200700991
Khanikar, 2009, Effects of carbon nanotube coating on flow boiling in a micro-channel, Int. J. Heat Mass Transf., 52, 3805, 10.1016/j.ijheatmasstransfer.2009.02.007
Ujereh, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transf., 50, 4023, 10.1016/j.ijheatmasstransfer.2007.01.030
Dai, 2013, Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings, Appl. Phys. Lett., 102, 161605-1, 10.1063/1.4802804
Liu, 2011, Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface, Int. J. Heat Mass Transf., 54, 126, 10.1016/j.ijheatmasstransfer.2010.09.060
Kousalya, 2012, Photonically enhanced flow boiling in a channel coated with carbon nanotubes, Appl. Phys. Lett., 100, 10.1063/1.3681594
A. Rashid, P. Bjorn, M.C. Claudi, H.M. Mohammad, Flow patterns and flow pattern maps for microchannels, in: Thermal Issues in Emerging Technologies Theory and Applications (ThETA), 2010 3rd International Conference on, 2010, pp. 33–42.
Kandlikar, 2010, Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective, Int. J. Therm. Sci., 49, 1073, 10.1016/j.ijthermalsci.2009.12.016
Serizawa, 2002, Two-phase flow in microchannels, Exp. Thermal Fluid Sci., 26, 703, 10.1016/S0894-1777(02)00175-9
Yang, 2013, Can multiple flow boiling regimes be reduced into a single one in microchannels?, Appl. Phys. Lett., 103, 043122, 10.1063/1.4816594
F. Yang, X. Dai, Y. Peles, P. Cheng, C. Li, Can Transitional Flow Boiling Regimes Be Reduced into a Single One in Microchannels?, Applied Physics Letters, In print (2013).
Hsu, 1962, On the size range of active nucleation cavities on a heating surface, J. Heat Transfer, 84, 207, 10.1115/1.3684339
Fan, 2004, Nanocarpet effect: pattern formation during the wetting of vertically aligned nanorod arrays, Nano Lett., 4, 2133, 10.1021/nl048776b
Kuo, 2010, Control of superhydrophilicity and superhydrophobicity of a superwetting silicon nanowire surface, J. Electrochem. Soc., 157, 10.1149/1.3464765
Wenzel, 1948, Surface Roughness and Contact Angle, The Journal of Physical and Colloid Chemistry, 53, 1466, 10.1021/j150474a015
Li, 2008, Nature-Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces, Adv. Funct. Mater., 18, 2215, 10.1002/adfm.200701405
Peng, 2002, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry, Adv. Mater., 14, 1164, 10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E
Zhang, 2008, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching, J. Phys. Chem. C, 112, 4444, 10.1021/jp077053o
Kline, 1953, Describing uncertainties in single-sample experiments, Mechanical Engineering, 75, 3
Wang, 1993, On the gas entrapment and nucleation site density during pool boiling of saturated water, J. Heat Transfer, 115, 670, 10.1115/1.2910738
Wu, 2009, Pressure drop and heat transfer of Al2O3–H2O nanofluids through silicon microchannels, J. Micromech. Microeng., 19, 10.1088/0960-1317/19/10/105020
Hosaka, 1992, Observation of natural oxide growth on silicon facets using an atomic force microscope with current measurement, J. Appl. Phys., 72, 688, 10.1063/1.351854
Borkent, 2007, Superstability of surface nanobubbles, Phys. Rev. Lett., 98, 204502, 10.1103/PhysRevLett.98.204502
Jin, 2008, Direct measurement of the nanobubble-induced weak depletion attraction between a spherical particle and a flat surface in an aqueous solution, Soft Matter, 4, 968, 10.1039/b802326c
Schneider, 2006, Cavitation enhanced heat transfer in microchannels, J. Heat Transf.-Trans. ASME, 128, 1293, 10.1115/1.2349505
Bergles, 2005, On the nature of critical heat flux in microchannels, J. Heat Transf.-Trans. ASME, 127, 101, 10.1115/1.1839587
Nukiyama, 1966, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure, Int. J. Heat Mass Transf., 9, 1419, 10.1016/0017-9310(66)90138-4
Thorncroft, 2001, BUBBLE FORCES AND DETACHMENT MODELS, Multiphase Science and Technology, 13, 42, 10.1615/MultScienTechn.v13.i3-4.20
Li, 2004, Bubble dynamics in microchannels. Part II: two parallel microchannels, Int. J. Heat Mass Transf., 47, 5591, 10.1016/j.ijheatmasstransfer.2004.02.032
Kabov, 2011, Evaporation and flow dynamics of thin, shear-driven liquid films in microgap channels, Exp. Thermal Fluid Sci., 35, 825, 10.1016/j.expthermflusci.2010.08.001
Wang, 2007, Characteristics of an evaporating thin film in a microchannel, Int. J. Heat Mass Transf., 50, 3933, 10.1016/j.ijheatmasstransfer.2007.01.052
Mukherjee, 2006, Numerical study of an evaporating meniscus on a moving heated surface, J. Heat Transf.-Trans. ASME, 128, 1285, 10.1115/1.2397093