Flow boiling phenomena in a single annular flow regime in microchannels (I): Characterization of flow boiling heat transfer

International Journal of Heat and Mass Transfer - Tập 68 - Trang 703-715 - 2014
Fanghao Yang1, Xianming Dai1, Yoav Peles2, Ping Cheng3, Jamil Khan1, Chen Li1
1Department of Mechanical Engineering, University of South Carolina, 300 Main St, Columbia, SC 29208, USA
2Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA
3School of Mechanical and Power Engineering, Shanghai Jiaotong University, 800 Dong Chuan Rd, Shanghai 200240, China

Tài liệu tham khảo

Agostini, 2007, State of the art of high heat flux cooling technologies, Heat Transf. Eng., 28, 258, 10.1080/01457630601117799 Thome, 2004, Boiling in microchannels: a review of experiment and theory, Int. J. Heat Fluid Flow, 25, 128, 10.1016/j.ijheatfluidflow.2003.11.005 Thome, 2006, State-of-the-art overview of boiling and two-phase flows in microchannels, Heat Transf. Eng., 27, 4, 10.1080/01457630600845481 Cheng, 2009, Recent work on boiling and condensation in microchannels, J. Heat Transfer, 131, 043211, 10.1115/1.3072906 Royne, 2005, Cooling of photovoltaic cells under concentrated illumination: a critical review, Solar Energy Mater. Solar Cells, 86, 451, 10.1016/j.solmat.2004.09.003 Luo, 2007, A microjet array cooling system for thermal management of high-brightness LEDs, IEEE Trans. Adv. Packag., 30, 475, 10.1109/TADVP.2007.898522 Jensen, 2001, Microreaction engineering – is small better?, Chem. Eng. Sci., 56, 293, 10.1016/S0009-2509(00)00230-X Kobayashi, 2004, A microfluidic device for conducting gas–liquid–solid hydrogenation reactions, Science, 304, 1305, 10.1126/science.1096956 Shui, 2008, Multiphase flow in lab on chip devices: a real tool for the future, Lab Chip, 8, 1010, 10.1039/b808974b Hartman, 2009, Microchemical systems for continuous-flow synthesis, Lab Chip, 9, 2495, 10.1039/b906343a Harirchian, 2011, Boiling heat transfer and flow regimes in microchannels – a comprehensive understanding, J. Electron. Packag., 133, 011001, 10.1115/1.4002721 Hailei, 2010, Enhanced boiling heat transfer in parallel microchannels with diffusion brazed wire mesh, IEEE Trans. Compon. Packag. Technol., 33, 784, 10.1109/TCAPT.2010.2070799 Kandlikar, 2006, Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites, J. Heat Transfer, 128, 389, 10.1115/1.2165208 Zhang, 2009, Ledinegg instability in microchannels, Int. J. Heat Mass Transf., 52, 5661, 10.1016/j.ijheatmasstransfer.2009.09.008 Wang, 2008, Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels, Int. J. Heat Mass Transf., 51, 2267, 10.1016/j.ijheatmasstransfer.2007.08.027 Wojtan, 2006, Investigation of saturated critical heat flux in a single, uniformly heated microchannel, Exp. Therm. Fluid Sci., 30, 765, 10.1016/j.expthermflusci.2006.03.006 Vafaei, 2010, Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel, J. Heat Transfer, 132, 102404, 10.1115/1.4001629 Hsieh, 2012, Correlation of critical heat flux and two-phase friction factor for subcooled convective boiling in structured surface microchannels, Int. J. Heat Mass Transf., 55, 32, 10.1016/j.ijheatmasstransfer.2011.08.036 Kosar, 2005, Boiling heat transfer in rectangular microchannels with reentrant cavities, Int. J. Heat Mass Transf., 48, 4867, 10.1016/j.ijheatmasstransfer.2005.06.003 Morshed, 2012, Enhanced flow boiling in a microchannel with integration of nanowires, Appl. Therm. Eng., 32, 68, 10.1016/j.applthermaleng.2011.08.031 Singh, 2010, Flow boiling enhancement on a horizontal heater using carbon nanotube coatings, Int. J. Heat Fluid Flow, 31, 201, 10.1016/j.ijheatfluidflow.2009.11.002 Li, 2012, Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires, Nano Lett. Kosar, 2006, Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors, J. Heat Transf.-Trans. ASME, 128, 251, 10.1115/1.2150837 Krishnamurthy, 2010, Flow boiling heat transfer on micro pin fins entrenched in a microchannel, J. Heat Transfer, 132, 041007, 10.1115/1.4000878 Guo, 2011, Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces, Appl. Therm. Eng., 31, 2042, 10.1016/j.applthermaleng.2011.03.017 Liu, 2010, Active control of flow and heat transfer in silicon microchannels, J. Micromech. Microeng., 20, 10.1088/0960-1317/20/4/045006 Xu, 2009, Seed bubbles stabilize flow and heat transfer in parallel microchannels, Int. J. Multiph. Flow, 35, 773, 10.1016/j.ijmultiphaseflow.2009.03.008 Kandlikar, 2002, Fundamental issues related to flow boiling in minichannels and microchannels, Exp. Thermal Fluid Sci., 26, 389, 10.1016/S0894-1777(02)00150-4 Yang, 2013, Enhanced flow boiling in microchannels by self-sustained high frequency two-phase oscillations, Int. J. Heat Mass Transf., 58, 402, 10.1016/j.ijheatmasstransfer.2012.11.057 Yang, 2012, High frequency microbubble-switched oscillations modulated by microfluidic transistors, Appl. Phys. Lett., 101, 10.1063/1.4745782 Losey, 2002, Design and fabrication of microfluidic devices for multiphase mixing and reaction, J. Microelectromech. Syst., 11, 709, 10.1109/JMEMS.2002.803416 Kuo, 2008, Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities, J. Heat Transf.-Trans. ASME, 130, 10.1115/1.2908431 Chandrasekaran, 2004, Effect of microfabrication processes on surface roughness parameters of silicon surfaces, Surf. Coat. Technol., 188–189, 581, 10.1016/j.surfcoat.2004.07.015 Kuo, 2006, Bubble dynamics during boiling in enhanced surface microchannels, J. Microelectromech. Syst., 15, 1514, 10.1109/JMEMS.2006.885975 Li, 2008, Dynamic characteristics of transient boiling on a square platinum microheater under millisecond pulsed heating, Int. J. Heat Mass Transf., 51, 273, 10.1016/j.ijheatmasstransfer.2007.03.045 Cao, 2011, Experiment investigation of R134a flow boiling process in microchannel with cavitation structure, Heat Transf. Eng., 32, 542, 10.1080/01457632.2010.506397 Kubo, 1999, Effects of size and number density of micro-reentrant cavities on boiling heat transfer from a silicon chip immersed in degassed and gas-dissolved FC-72, J. Enhanced Heat Transf., 6, 151, 10.1615/JEnhHeatTransf.v6.i2-4.80 Chen, 2009, Nanowires for enhanced boiling heat transfer, Nano Lett., 9, 548, 10.1021/nl8026857 Li, 2008, Nanostructured copper interfaces for enhanced boiling, Small, 4, 1084, 10.1002/smll.200700991 Khanikar, 2009, Effects of carbon nanotube coating on flow boiling in a micro-channel, Int. J. Heat Mass Transf., 52, 3805, 10.1016/j.ijheatmasstransfer.2009.02.007 Ujereh, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transf., 50, 4023, 10.1016/j.ijheatmasstransfer.2007.01.030 Dai, 2013, Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings, Appl. Phys. Lett., 102, 161605-1, 10.1063/1.4802804 Liu, 2011, Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface, Int. J. Heat Mass Transf., 54, 126, 10.1016/j.ijheatmasstransfer.2010.09.060 Kousalya, 2012, Photonically enhanced flow boiling in a channel coated with carbon nanotubes, Appl. Phys. Lett., 100, 10.1063/1.3681594 A. Rashid, P. Bjorn, M.C. Claudi, H.M. Mohammad, Flow patterns and flow pattern maps for microchannels, in: Thermal Issues in Emerging Technologies Theory and Applications (ThETA), 2010 3rd International Conference on, 2010, pp. 33–42. Kandlikar, 2010, Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective, Int. J. Therm. Sci., 49, 1073, 10.1016/j.ijthermalsci.2009.12.016 Serizawa, 2002, Two-phase flow in microchannels, Exp. Thermal Fluid Sci., 26, 703, 10.1016/S0894-1777(02)00175-9 Yang, 2013, Can multiple flow boiling regimes be reduced into a single one in microchannels?, Appl. Phys. Lett., 103, 043122, 10.1063/1.4816594 F. Yang, X. Dai, Y. Peles, P. Cheng, C. Li, Can Transitional Flow Boiling Regimes Be Reduced into a Single One in Microchannels?, Applied Physics Letters, In print (2013). Hsu, 1962, On the size range of active nucleation cavities on a heating surface, J. Heat Transfer, 84, 207, 10.1115/1.3684339 Fan, 2004, Nanocarpet effect: pattern formation during the wetting of vertically aligned nanorod arrays, Nano Lett., 4, 2133, 10.1021/nl048776b Kuo, 2010, Control of superhydrophilicity and superhydrophobicity of a superwetting silicon nanowire surface, J. Electrochem. Soc., 157, 10.1149/1.3464765 Wenzel, 1948, Surface Roughness and Contact Angle, The Journal of Physical and Colloid Chemistry, 53, 1466, 10.1021/j150474a015 Li, 2008, Nature-Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces, Adv. Funct. Mater., 18, 2215, 10.1002/adfm.200701405 Peng, 2002, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry, Adv. Mater., 14, 1164, 10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E Zhang, 2008, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching, J. Phys. Chem. C, 112, 4444, 10.1021/jp077053o Kline, 1953, Describing uncertainties in single-sample experiments, Mechanical Engineering, 75, 3 Wang, 1993, On the gas entrapment and nucleation site density during pool boiling of saturated water, J. Heat Transfer, 115, 670, 10.1115/1.2910738 Wu, 2009, Pressure drop and heat transfer of Al2O3–H2O nanofluids through silicon microchannels, J. Micromech. Microeng., 19, 10.1088/0960-1317/19/10/105020 Hosaka, 1992, Observation of natural oxide growth on silicon facets using an atomic force microscope with current measurement, J. Appl. Phys., 72, 688, 10.1063/1.351854 Borkent, 2007, Superstability of surface nanobubbles, Phys. Rev. Lett., 98, 204502, 10.1103/PhysRevLett.98.204502 Jin, 2008, Direct measurement of the nanobubble-induced weak depletion attraction between a spherical particle and a flat surface in an aqueous solution, Soft Matter, 4, 968, 10.1039/b802326c Schneider, 2006, Cavitation enhanced heat transfer in microchannels, J. Heat Transf.-Trans. ASME, 128, 1293, 10.1115/1.2349505 Bergles, 2005, On the nature of critical heat flux in microchannels, J. Heat Transf.-Trans. ASME, 127, 101, 10.1115/1.1839587 Nukiyama, 1966, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure, Int. J. Heat Mass Transf., 9, 1419, 10.1016/0017-9310(66)90138-4 Thorncroft, 2001, BUBBLE FORCES AND DETACHMENT MODELS, Multiphase Science and Technology, 13, 42, 10.1615/MultScienTechn.v13.i3-4.20 Li, 2004, Bubble dynamics in microchannels. Part II: two parallel microchannels, Int. J. Heat Mass Transf., 47, 5591, 10.1016/j.ijheatmasstransfer.2004.02.032 Kabov, 2011, Evaporation and flow dynamics of thin, shear-driven liquid films in microgap channels, Exp. Thermal Fluid Sci., 35, 825, 10.1016/j.expthermflusci.2010.08.001 Wang, 2007, Characteristics of an evaporating thin film in a microchannel, Int. J. Heat Mass Transf., 50, 3933, 10.1016/j.ijheatmasstransfer.2007.01.052 Mukherjee, 2006, Numerical study of an evaporating meniscus on a moving heated surface, J. Heat Transf.-Trans. ASME, 128, 1285, 10.1115/1.2397093