Representation of holomorphic functions by schlömilch’s series

Fractional Calculus and Applied Analysis - Tập 16 - Trang 431-435 - 2013
Peter Rusev1
1Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Tóm tắt

A necessary and sufficient condition is given for holomorphic functions to be represented by series of the kind $\sum\limits_{n = 0}^\infty {a_n J_0 (nz),z,a_n \in \mathbb{C},} $ where J 0(z) is the Bessel function of first kind with zero index. To derive the result, we use an Erdélyi-Kober operator of fractional order.

Tài liệu tham khảo

H. Bateman, A. Erdélyi, Higher Transcendental Functions, Volume 2. Mc Graw-Hill Book Company, New York, 1953. I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series, and Products, 6th ed., Academic Press, San Diego, 2000. P. Rusev, Analytic Functions and Classical Orthogonal Polynomials. Publ. House of Bulg. Acad. Sci., Sofia, 1984. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993; Engl. Trans. from the Russian Ed., 1987. O. X. Schlömilch, Über die Bessel’schen Functionen. Zeitschr. für Math. und Phys. 2 (1857), 137–165. J. V. Uspensky, On the development of arbitrary functions in series of Hermite’s and Laguerre’s polynomials. Ann. Math. (2) 28 (1927), 593–619. G.N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press, Cambridge, 1922.