Comparison of hybrid 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients: Additional value of morphologic information from low dose CT

European Radiology - Tập 28 - Trang 610-619 - 2017
Jan-Carlo Janssen1, Sebastian Meißner1, Nadine Woythal2, Vikas Prasad2, Winfried Brenner2, Gerd Diederichs1, Bernd Hamm1, Marcus R. Makowski1
1Department of Radiology, Charité, Berlin, Germany
2Department of Nuclear Medicine, Charité, Berlin, Germany

Tóm tắt

This study compared 68Gallium-prostate-specific-membrane-antigen based Positron-emission-tomography (68Ga-PSMA-PET) and 99metastabletechnetium-3,3-diphospho-1,2-propanedicarbonacid (99mTc-DPD-SPECT) in performing skeletal staging in prostate cancer (PC) patients and evaluated the additional value of the information from low-dose-computed tomography (CT). In this retrospective study, 54 patients who received 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT within 80 days were extracted from our database. Osseous lesions were classified as benign, malignant or equivocal. Lesion, region and patient based analysis was performed with and without CT fusion. The reference standard was generated by defining a best valuable comparator (BVC) containing information from all available data. In the patient based analysis, accuracies measured as “area-under-the-curve” (AUC) for 68Ga-PSMA-PET, 99mTc-SPECT, 68Ga-PSMA-PET/CT and 99mTc-SPECT/CT were 0.97-0.96, 0.86-0.83, 1.00 and 0.83, respectively (p<0.05) (ranges = optimistic vs. pessimistic view). Region based analysis resulted in the following sensitivities and specificities: 91.8-97.7%, 100-99.5% (PET); 61.2-70.6%, 99.8-98.3% (SPECT); 97.7%, 100% (PET/CT), 69.4% and 98.3% (SPECT/CT) (p<0.05). The amount of correct classifications of equivocal lesions by CT was significantly higher in PET (100%) compared to SPECT (52.4%) (p<0.05). 68Ga-PSMA-PET outperforms 99mTc-DPD-SPECT in detecting bone metastases in PC patients. Additional information from low-dose-CT resulted in a significant reduction in equivocal lesions in both modalities, however 68Ga-PSMA-PET benefited most. • Ga-PSMA-PET outperforms 99m Tc-DPD-SPECT in skeletal staging in prostate cancer patients • Proportion of equivocal decisions was significantly reduced by CT-fusion in both modalities • Ga-PSMA-PET benefits more from CT information, compared to 99m Tc-DPD-SPECT

Tài liệu tham khảo

Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30 Bubendorf L, Schopfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583 Carlin BI, Andriole GL (2000) The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 88:2989–2994 Rigaud J, Tiguert R, Le Normand L et al (2002) Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol 168:1423–1426 Heidenreich A, Bastian PJ, Bellmunt J et al (2014) EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 65:124–137 Mohler JL, Kantoff PW, Armstrong AJ et al (2014) Prostate cancer, version 2.2014. J Natl Compr Canc Netw 12:686–718 Thompson I, Thrasher JB, Aus G et al (2007) Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol 177:2106–2131 Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297 Schirrmeister H, Glatting G, Hetzel J et al (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42:1800–1804 Apostolova I, Golcuk E, Bohuslavizki KH, Buchert R, Brenner W (2009) Impact of additional SPECT in bone scanning in tumor patients with suspected metastatic bone disease. Ann Nucl Med 23:869–875 Eder M, Neels O, Muller M et al (2014) Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals (Basel) 7:779–796 Afshar-Oromieh A, Malcher A, Eder M et al (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:486–495 Eder M, Schafer M, Bauder-Wust U et al (2012) 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 23:688–697 Eiber M, Maurer T, Souvatzoglou M et al (2015) Evaluation of Hybrid (6)(8)Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy. J Nucl Med 56:668–674 Maurer T, Gschwend JE, Rauscher I et al (2016) Diagnostic Efficacy of (68)Gallium-PSMA Positron Emission Tomography Compared to Conventional Imaging for Lymph Node Staging of 130 Consecutive Patients with Intermediate to High Risk Prostate Cancer. J Urol 195:1436–1443 Afshar-Oromieh A, Avtzi E, Giesel FL et al (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42:197–209 Rowe SP, Gorin MA, Allaf ME et al (2016) PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges. Prostate Cancer Prostatic Dis 19:223–230 Pyka T, Okamoto S, Dahlbender M et al (2016) Comparison of bone scintigraphy and 68Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging 43:2114–2121 Dietlein M, Kobe C, Kuhnert G et al (2015) Comparison of [(18)F]DCFPyL and [ (68)Ga]Ga-PSMA-HBED-CC for PSMA-PET Imaging in Patients with Relapsed Prostate Cancer. Mol Imaging Biol 17:575–584 Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48:471–480 Lecouvet FE, El Mouedden J, Collette L et al (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62:68–75 Woo S, Kim SY, Kim SH, Cho JY (2016) JOURNAL CLUB: Identification of Bone Metastasis With Routine Prostate MRI: A Study of Patients With Newly Diagnosed Prostate Cancer. AJR Am J Roentgenol 206:1156–1163 DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845 Richardson JT (2011) The analysis of 2 x 2 contingency tables--yet again. Stat Med 30:890, author reply 891-892 Campbell I (2007) Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat Med 26:3661–3675 Jambor I, Kuisma A, Ramadan S et al (2016) Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol 55:59–67 Shen G, Deng H, Hu S, Jia Z (2014) Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 43:1503–1513 Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM (2012) [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging 39:1085–1086 Francis MDHP, Tofe AJ (1981) Controversial mechanism of technetium-99m deposition on bone. J Nucl Med 22:72 Jones AG, Francis MD, Davis MA (1976) Bone scanning: radionuclidic reaction mechanisms. Semin Nucl Med 6:3–18 Eder M, Eisenhut M, Babich J, Haberkorn U (2013) PSMA as a target for radiolabelled small molecules. Eur J Nucl Med Mol Imaging 40:819–823 Blazak JK, Thomas P (2016) Paget Disease: A Potential Pitfall in PSMA PET for Prostate Cancer. Clin Nucl Med 41:699–700 Sasikumar A, Joy A, Pillai MR, Raman V, Vasudevan A, Madhavan J (2017) A rare case of rectal carcinoma and prostate carcinoma with coexistent Paget's disease mimicking bone metastases in both 18F-FDG and 68Ga PSMA PET/CT. Eur J Nucl Med Mol Imaging 44:173 Lecouvet FE, Geukens D, Stainier A et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25:3281–3287 Pasoglou V, Larbi A, Collette L et al (2014) One-step TNM staging of high-risk prostate cancer using magnetic resonance imaging (MRI): toward an upfront simplified "all-in-one" imaging approach? Prostate 74:469–477