Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents
Tóm tắt
The IL-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine known to antagonise the actions of IL-1. We have previously shown that IL-1Ra is markedly upregulated in the serum of obese patients, is correlated with BMI and insulin resistance, and is overexpressed in the white adipose tissue (WAT) of obese humans. The aim of this study was to examine the role of IL-1Ra in the regulation of glucose homeostasis in rodents. We assessed the expression of genes related to IL-1 signalling in the WAT of mice fed a high-fat diet, as well as the effect of Il1rn (the gene for IL-1Ra) deletion and treatment with IL-1Ra on glucose homeostasis in rodents. We show that the expression of Il1rn and the gene encoding the inhibitory type II IL-1 receptor was upregulated in diet-induced obesity. The blood insulin:glucose ratio was significantly lower in Il1rn
−/−
animals, which is compatible with an increased sensitivity to insulin, reinforced by the fact that the insulin content and pancreatic islet morphology of Il1rn
−/−
animals were normal. In contrast, the administration of IL-1Ra to normal rats for 5 days led to a decrease in the whole-body glucose disposal due to a selective decrease in muscle-specific glucose uptake. The expression of genes encoding inhibitors of IL-1 signalling is upregulated in the WAT of mice with diet-induced obesity, and IL-1Ra reduces insulin sensitivity in rats through a muscle-specific decrease in glucose uptake. These results suggest that the markedly increased levels of IL-1Ra in human obesity might contribute to the development of insulin resistance.
Tài liệu tham khảo
Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91
Hotamisligil GS, Arner P, Caro JF et al (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415
Kern PA, Saghizadeh M, Ong JM et al (1995) The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 95:2111–2119
Pincelli AI, Brunani A, Scacchi M et al (2001) The serum concentration of tumor necrosis factor alpha is not an index of growth-hormone- or obesity-induced insulin resistance. Horm Res 55:57–64
Ronnemaa T, Pulkki K, Kaprio J (2000) Serum soluble tumor necrosis factor-alpha receptor 2 is elevated in obesity but is not related to insulin sensitivity: a study in identical twins discordant for obesity. J Clin Endocrinol Metab 85:2728–2732
Mohamed-Ali V, Goodrick S, Rawesh A et al (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82:4196–4200
Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850
Vgontzas AN, Papanicolaou DA, Bixler EO et al (1997) Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 82:1313–1316
Roytblat L, Rachinsky M, Fisher A et al (2000) Raised interleukin-6 levels in obese patients. Obes Res 8:673–675
Bastard JP, Jardel C, Bruckert E et al (2000) Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 85:3338–3342
Meier CA, Bobbioni E, Gabay C et al (2002) IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J Clin Endocrinol Metab 87:1184–1188
Juge-Aubry CE, Somm E, Giusti V et al (2003) Adipose tissue is a major source of interleukin-1 receptor antagonist: upregulation in obesity and inflammation. Diabetes 52:1104–1110
Arend WP (1990) Interleukin-1 receptor antagonist: discovery, structure and properties. Prog Growth Factor Res 2:193–205
Neumann D, Kollewe C, Martin MU et al (2000) The membrane form of the type II IL-1 receptor accounts for inhibitory function. J Immunol 165:3350–3357
Luheshi GN, Gardner JD, Rushforth DA et al (1999) Leptin actions on food intake and body temperature are mediated by IL-1. Proc Natl Acad Sci USA 96:7047–7052
Gregoire F, De Broux N, Hauser N et al (1992) Interferon-gamma and interleukin-1 beta inhibit adipoconversion in cultured rodent preadipocytes. J Cell Physiol 151:300–309
Suzawa M, Takada I, Yanagisawa J et al (2003) Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 5:224–230
Matsuki T, Horai R, Sudo K et al (2003) IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. J Exp Med 198:877–888
Nicklin MJ, Hughes DE, Barton JL et al (2000) Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med 191:303–312
Meda P, Bosco D, Chanson M et al (1990) Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest 86:759–768
Charollais A, Gjinovci A, Huarte J et al (2000) Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. J Clin Invest 106:235–243
Terrettaz J, Assimacopoulos-Jeannet F, Jeanrenaud B (1986) Severe hepatic and peripheral insulin resistance as evidenced by euglycemic clamps in genetically obese fa/fa rats. Endocrinology 118:674–678
Cusin I, Terrettaz J, Rohner-Jeanrenaud F et al (1990) Metabolic consequences of hyperinsulinaemia imposed on normal rats on glucose handling by white adipose tissue, muscles and liver. Biochem J 267:99–103
Vettor R, Zarjevski N, Cusin I et al (1994) Induction and reversibility of an obesity syndrome by intracerebroventricular neuropeptide Y administration to normal rats. Diabetologia 37:1202–1208
Herbert V, Lau KS, Gottlieb CW et al (1965) Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab 25:1375–1384
Del Rey A, Besedovsky H (1987) Interleukin 1 affects glucose homeostasis. Am J Physiol 253:R794–R798
Del Rey A, Monge-Arditi G, Besedovsky HO (1998) Central and peripheral mechanisms contribute to the hypoglycemia induced by interleukin-1. Ann N Y Acad Sci 840:153–161
Harkins JM, Moustaid-Moussa N, Chung YJ et al (2004) Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6J and ob/ob mice. J Nutr 134:2673–2677
Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860
Jhala U, Baly DL (1994) Effect of chronic IL-1 beta infusion on glucose homeostasis and pancreatic insulin secretion. Life Sci 54:413–422
Besedovsky HO, del Rey A (1989) Interleukin-1 and glucose homeostasis: an example of the biological relevance of immune-neuroendocrine interactions. Horm Res 31:94–99
Del Rey A, Besedovsky H (1989) Antidiabetic effects of interleukin 1. Proc Natl Acad Sci USA 86:5943–5947
Lang CH, Dobrescu C (1989) Interleukin-1 induced increases in glucose utilization are insulin mediated. Life Sci 45:2127–2134