A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries

Energy and Environmental Science - Tập 14 Số 12 - Trang 6455-6463
Meiqi Zhao1, Haoran Liu1, Hongwei Zhang1, Wen Chen1, Hanqin Sun1, Zhenhua Wang1, Biao Zhang1, Lin Song1, Yong Yang2, Chao Ma3, Yunhu Han1,4,5, Wei Huang1
1Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, P. R. China
3Department of Chemistry, Tsinghua University, Beijing 100084, China
4Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
5State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

Tóm tắt

The pH-universal ORR performance and reaction-mechanism scheme of the Fe1/d-CN catalyst, which acts as the cathode for flexible quasi-solid-state alkaline/neutral rechargeable Zn–air batteries.

Từ khóa


Tài liệu tham khảo

Shinde, 2021, Nat. Energy, 6, 592, 10.1038/s41560-021-00807-8

Wu, 2020, Nano Lett., 20, 2892, 10.1021/acs.nanolett.0c00717

Wang, 2017, J. Am. Chem. Soc., 139, 9921, 10.1021/jacs.7b03227

Nishide, 2008, Science, 319, 737, 10.1126/science.1151831

Helou, 2021, Nat. Commun., 12, 1633, 10.1038/s41467-021-21920-y

Guo, 2017, Chem, 3, 348, 10.1016/j.chempr.2017.05.004

Gao, 2019, Acc. Chem. Res., 52, 523, 10.1021/acs.accounts.8b00500

Yang, 2019, Chem. Soc. Rev., 48, 1465, 10.1039/C7CS00730B

Jia, 2020, Energy Storage Mater., 27, 169, 10.1016/j.ensm.2020.01.030

Wen, 2021, Energy Storage Mater., 37, 94, 10.1016/j.ensm.2021.02.002

Zhou, 2020, Energy Environ. Sci., 13, 1933, 10.1039/D0EE00039F

Nakata, 2018, Nat. Electron., 1, 596, 10.1038/s41928-018-0162-5

Fu, 2016, ACS Energy Lett., 1, 1065, 10.1021/acsenergylett.6b00401

Li, 2019, Joule, 3, 613, 10.1016/j.joule.2019.01.013

Balogun, 2018, Energy Environ. Sci., 11, 1859, 10.1039/C8EE00522B

Chou, 2021, Nano Lett., 21, 2074, 10.1021/acs.nanolett.0c04568

Li, 2014, Energy Environ. Sci., 7, 2101, 10.1039/c4ee00318g

Sun, 2021, Science, 371, 46, 10.1126/science.abb9554

El-Shall, 2021, J. Am. Chem. Soc., 143, 4064, 10.1021/jacs.1c01096

Liu, 2019, Nat. Commun., 10, 4767, 10.1038/s41467-019-12627-2

Stock, 2019, ACS Energy Lett., 4, 1287, 10.1021/acsenergylett.9b00510

Chen, 2020, Energy Storage Mater., 24, 402, 10.1016/j.ensm.2019.07.028

Ramakrishnan, 2020, Appl. Catal., B, 279, 119381, 10.1016/j.apcatb.2020.119381

Peng, 2020, Appl. Catal., B, 268, 118437, 10.1016/j.apcatb.2019.118437

Zhong, 2019, Adv. Sci., 6, 1802243, 10.1002/advs.201802243

Wang, 2021, Energy Environ. Sci., 14, 2639, 10.1039/D0EE03915B

Lu, 2018, Nat. Catal., 1, 156, 10.1038/s41929-017-0017-x

Wang, 2020, Angew. Chem., Int. Ed., 59, 6492, 10.1002/anie.202000690

Li, 2019, Energy Environ. Sci., 12, 648, 10.1039/C8EE02779J

Wang, 2016, Science, 354, 1031, 10.1126/science.aaf7680

Li, 2014, Chem. Soc. Rev., 43, 5257, 10.1039/C4CS00015C

Tian, 2020, Joule, 4, 45, 10.1016/j.joule.2019.12.014

Li, 2019, Joule, 3, 557, 10.1016/j.joule.2018.11.015

Li, 2018, Energy Environ. Sci., 11, 2263, 10.1039/C8EE01169A

Li, 2019, Angew. Chem., Int. Ed., 58, 7035, 10.1002/anie.201902109

Tian, 2019, Science, 366, 850, 10.1126/science.aaw7493

Tian, 2021, Energy Storage Mater., 37, 274, 10.1016/j.ensm.2021.02.017

Nie, 2015, Chem. Soc. Rev., 44, 2168, 10.1039/C4CS00484A

Zhao, 2021, Nat. Catal., 4, 134, 10.1038/s41929-020-00563-0

Li, 2021, Nat. Catal., 4, 10, 10.1038/s41929-020-00545-2

Primbs, 2020, Energy Environ. Sci., 13, 2480, 10.1039/D0EE01013H

Wang, 2020, Energy Environ. Sci., 13, 4609, 10.1039/D0EE02833A

Wang, 2021, ACS Nano, 15, 210, 10.1021/acsnano.0c08652

Zhou, 2020, J. Am. Chem. Soc., 142, 12643, 10.1021/jacs.0c03415

Li, 2020, Nano Res., 13, 1842, 10.1007/s12274-020-2755-3

Zoubi, 2020, J. Am. Chem. Soc., 142, 5477, 10.1021/jacs.9b11061

Kirchon, 2018, Chem. Soc. Rev., 47, 8611, 10.1039/C8CS00688A

Li, 2021, J. Am. Chem. Soc., 143, 5182, 10.1021/jacs.1c01357

Zhou, 2020, Angew. Chem., Int. Ed., 59, 20465, 10.1002/anie.202009700

Kitao, 2017, Chem. Soc. Rev., 46, 3108, 10.1039/C7CS00041C

Zheng, 2017, Chem, 2, 751, 10.1016/j.chempr.2017.05.014

Cai, 2017, Chem, 2, 791, 10.1016/j.chempr.2017.04.016

Sun, 2019, Nano Res., 12, 2067, 10.1007/s12274-019-2345-4

Wei, 2021, Adv. Energy Mater., 2003970, 10.1002/aenm.202003970

Sapnik, 2021, Nat. Commun., 12, 2062, 10.1038/s41467-021-22218-9

Jiang, 2018, J. Am. Chem. Soc., 140, 11594, 10.1021/jacs.8b07294

Li, 2020, Adv. Mater., 32, 1906722, 10.1002/adma.201906722

Tiburcio, 2021, J. Am. Chem. Soc., 143, 2581, 10.1021/jacs.0c12367

Han, 2018, Energy Environ. Sci., 11, 2348, 10.1039/C8EE01481G

Zhang, 2017, J. Am. Chem. Soc., 139, 14143, 10.1021/jacs.7b06514

Li, 2018, Adv. Mater., 30, 1800588, 10.1002/adma.201800588

Ramaswamy, 2013, J. Am. Chem. Soc., 135, 15443, 10.1021/ja405149m

Chen, 2017, Angew. Chem., Int. Ed., 56, 1, 10.1002/anie.201610955

Hu, 2019, ACS Catal., 9, 11579, 10.1021/acscatal.9b03175

Jiao, 2018, Angew. Chem., Int. Ed., 57, 8525, 10.1002/anie.201803262

Wang, 2019, Adv. Funct. Mater., 29, 1901531, 10.1002/adfm.201901531

Jiang, 2016, J. Am. Chem. Soc., 138, 3570, 10.1021/jacs.6b00757