Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP25 index
Tài liệu tham khảo
Aitchison, 1986
Aluja-Banet, 2003, Stability and scalability in decision trees, Comput. Stat., 18, 505, 10.1007/BF03354613
Årthun, 2012, Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, J. Clim., 25, 4736, 10.1175/JCLI-D-11-00466.1
Belt, 2000, Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers, Geochim. Cosmochim. Acta, 64, 3839, 10.1016/S0016-7037(00)00464-6
Belt, 2013, Quantitative measurement of the sea ice diatom biomarker IP25 and sterols in Arctic sea ice and underlying sediments: further considerations for palaeo sea ice reconstruction, Org. Geochem., 62, 33, 10.1016/j.orggeochem.2013.07.002
Belt, 2012, A reproducible method for the extraction, identification and quantification of the Arctic sea ice proxy IP25 from marine sediments, Anal. Methods, 4, 705, 10.1039/c2ay05728j
Belt, 2017, Identification of C25 highly branched isoprenoid (HBI) alkenes in diatoms of the genus Rhizosolenia in polar and non-polar marine phytoplankton, Org. Geochem., 110, 65, 10.1016/j.orggeochem.2017.05.007
Belt, 2015, Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice, Earth Planet. Sci. Lett., 431, 127, 10.1016/j.epsl.2015.09.020
Belt, 2007, A novel chemical fossil of palaeo sea ice: IP25, Org. Geochem., 38, 16, 10.1016/j.orggeochem.2006.09.013
Belt, 2008, Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps, Mar. Chem., 112, 158, 10.1016/j.marchem.2008.09.002
Belt, 2013, The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions, Quat. Sci. Rev., 79, 9, 10.1016/j.quascirev.2012.12.001
Belt, 2016, Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 12655, 10.1038/ncomms12655
Berben, 2014, Holocene sub-centennial evolution of Atlantic Water inflow and sea ice distribution in the western Barents Sea, Clim. Past, 10, 181, 10.5194/cp-10-181-2014
Berben, 2017, Semi-quantitative reconstruction of early to late Holocene spring and summer sea ice conditions in the northern Barents Sea, J. Quaternary Sci., 32, 587, 10.1002/jqs.2953
Beszczynska-Möller, 2012, Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010, ICES J. Mar. Sci., 69, 852, 10.1093/icesjms/fss056
Bitz, 2006, The influence of sea ice on ocean heat uptake in response to increasing CO2, J. Clim., 19, 2437, 10.1175/JCLI3756.1
Boitsov, 2009, Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea, Mar. Environ. Res., 68, 236, 10.1016/j.marenvres.2009.06.013
Breiman, 1984
Brown T.A. (2011) Production and preservation of the Arctic sea ice diatom biomarker IP25. Ph.D. thesis, Plymouth Univ.
Brown, 2014, Identification of a novel di-unsaturated C25 highly branched isoprenoid in the marine tube-dwelling diatom Berkeleya rutilans, Environ. Chem. Lett., 12, 455, 10.1007/s10311-014-0472-4
Brown, 2011, Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: further evidence for the use of the IP25 biomarker as a proxy for spring Arctic sea ice, Polar Biol., 34, 1857, 10.1007/s00300-010-0942-5
Brown, 2014, Source identification of the Arctic sea ice proxy IP25, Nat. Commun., 5, 4197, 10.1038/ncomms5197
Bunge, 1963, A general Black Box Theory, Philos. Sci., 30, 346, 10.1086/287954
Cabedo-Sanz, 2015, Identification and characterisation of a novel mono-unsaturated highly branched isoprenoid (HBI) alkene in ancient Arctic sediments, Org. Geochem., 81, 34, 10.1016/j.orggeochem.2015.01.009
Cabedo-Sanz, 2016, Seasonal sea ice variability in eastern Fram Strait over the last 2000years, Arktos, 2, 22, 10.1007/s41063-016-0023-2
Cabedo-Sanz, 2013, Identification of contrasting seasonal sea ice conditions during the Younger Dryas, Quat. Sci. Rev., 79, 74, 10.1016/j.quascirev.2012.10.028
Cavalieri D. J., Parkinson C. L., Gloersen P. and Zwally H.J . (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. ver. 1.1. NASA DAAC at the National Snow and Ice Data Center. Boulder, Colorado (https://doi.org/10.5067/8GQ8LZQVL0VL) [Digital Media, updated yearly].
Cochrane, 2009, Benthic macrofauna and productivity regimes in the Barents Sea—ecological implications in a changing Arctic, J. Sea Res., 61, 222, 10.1016/j.seares.2009.01.003
Derocher, 2011, Sea ice and polar bear den ecology at Hopen Island, Svalbard, Mar. Ecol. Progr. Ser., 441, 273, 10.3354/meps09406
de Vernal, 2013, Sea ice in the paleoclimate system: The challenge of reconstructing sea ice from proxies – an introduction, Quat. Sci. Rev., 79, 1, 10.1016/j.quascirev.2013.08.009
Divine, 2006, Historical variability of sea ice edge position in the Nordic Seas, J. Geophys. Res. Oceans, 111, C01001, 10.1029/2004JC002851
Fahl, 2012, Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: new insights from biomarker proxy records, Earth Planet. Sci. Lett., 351–352, 123, 10.1016/j.epsl.2012.07.009
Fetterer F., Knowles K., Meier W.N. and Savoie M. (2016) Sea Ice Index. ver. 2. NSIDC: National Snow and Ice Data Center. Boulder, Colorado (https://doi.org/10.7265/N5736NV7) [Digital Media, updated daily].
Galimberti, 2012, Classification trees for ordinal responses in R: the rpartScore package, J. Stat. Softw., 46, 1
Hansen J., Ruedy R., Sato M. and Lo K. (2010) Global surface temperature change. Rev. Geophys. 48, Rg4004.
Hastie, 2009
He, 2016, Occurrence of unsaturated C25 highly branched isoprenoids (HBIs) in a freshwater wetland, Org. Geochem., 93, 59, 10.1016/j.orggeochem.2016.01.006
Hoff, 2016, Sea ice and millennial-scale climate variability in the Nordic Seas 90 kyr ago to present, Nat. Commun., 7, 12247, 10.1038/ncomms12247
Hörner T., Stein R. and Fahl K. (2017) Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean). Geo-Mar. Lett., doi: https://doi.org/10.1007/s00367-00017-00501-y.
Ivanov, 2012, Tracing Atlantic Water signature in the Arctic sea ice cover east of Svalbard, Adv. Meteorol., 2012, 201818, 10.1155/2012/201818
Janout, 2016, Sea-ice retreat controls timing of summer plankton blooms in the Eastern Arctic Ocean, Geophys. Res. Lett., 43, 12493, 10.1002/2016GL071232
Kinnard, 2011, Reconstructed changes in Arctic sea ice over the past 1,450 years, Nature, 479, 509, 10.1038/nature10581
Knies, 2007, Re-assessing the nitrogen signal in continental margin sediments: new insights from the high northern latitudes, Earth Planet. Sci. Lett., 253, 471, 10.1016/j.epsl.2006.11.008
Knies, 2014, The emergence of modern sea ice cover in the Arctic Ocean, Nat. Commun., 5, 5608, 10.1038/ncomms6608
Knies J., Jensen H. K. B., Finne T. E., Lepland A. and Saether O. M. (2006) Sediment composition and heavy metal distribution in Barents Sea surface samples: results from Institute of Marine Research 2003 and 2004 cruises. NGU rapport 2006.067, Trondheim, Norway.
Knies, 2009, Organic matter sedimentation in the western Barents Sea region: terrestrial and marine contribution based on isotopic composition and organic nitrogen content, Nor. J. Geol., 89, 79
Knies, 2017, Sea-ice dynamics in an Arctic coastal polynya during the past 6500years, Arktos, 3, 1, 10.1007/s41063-016-0027-y
Kuhn M., Wing J., Weston S., Williams A., Keefer C., Engelhardt A., Cooper T., Mayer Z., Kenkel B., R Core Team, Benesty M., Lescarbeau R., Ziem A., Scrucca L., Tang Y., Candan C. and Hunt, T. (2016) Caret: Classification and Regression Training. ver. 6.0-73. <https://cran.r-project.org/package=caret>.
Kwok, 2005, On large outflows of Arctic sea ice into the Barents Sea, Geophys. Res. Lett., 32, L22503, 10.1029/2005GL024485
Landis, 1977, The measurement of observer agreement for categorical data, Biometrics, 33, 159, 10.2307/2529310
Leonard, 1990, An assessment of sediment loss and distortion at the top of short gravity cores, Sed. Geol., 66, 57, 10.1016/0037-0738(90)90006-F
Leu, 2011, Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality, Progr. Oceanogr., 90, 18, 10.1016/j.pocean.2011.02.004
Loeng, 1991, Features of the physical oceanographic conditions of the Barents Sea, Polar Res., 10, 5, 10.3402/polar.v10i1.6723
Loeng, 2007, An overview of the ecosystems of the Barents and Norwegian Seas and their response to climate variability, Deep-Sea Res. Pt. II, 54, 2478, 10.1016/j.dsr2.2007.08.013
Loeng, 1997, Water fluxes through the Barents Sea, ICES J. Mar. Sci., 54, 310, 10.1006/jmsc.1996.0165
Maiti, 2010, Sedimentation and particle dynamics in the seasonal ice zone of the Barents Sea, J. Mar. Syst., 79, 185, 10.1016/j.jmarsys.2009.09.001
Massé, 2008, Abrupt climate changes for Iceland during the last millennium: evidence from high resolution sea ice reconstructions, Earth Planet. Sci. Lett., 269, 565, 10.1016/j.epsl.2008.03.017
Méheust, 2013, Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: reconstruction from biomarker data, Org. Geochem., 57, 54, 10.1016/j.orggeochem.2013.01.008
Meier, 2014, Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity, Rev. Geophys., 52, 185, 10.1002/2013RG000431
Milborrow S. (2017) rpart.plot: Plot 'rpart' models: An enhanced version of 'plot.rpart'. ver. 2.1.2. <http://www.milbo.org/rpart-plot>.
Müller, 2009, Variability of sea-ice conditions in the Fram Strait over the past 30,000 years, Nat. Geosci., 2, 772, 10.1038/ngeo665
Müller, 2014, High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice–ocean interactions during abrupt climate shifts, Earth Planet. Sci. Lett., 403, 446, 10.1016/j.epsl.2014.07.016
Müller, 2011, Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach, Earth Planet. Sci. Lett., 306, 137, 10.1016/j.epsl.2011.04.011
Müller, 2012, Holocene cooling culminates in sea ice oscillations in Fram Strait, Quat. Sci. Rev., 47, 1, 10.1016/j.quascirev.2012.04.024
Navarro-Rodriguez, 2013, Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea ice reconstructions, Quat. Sci. Rev., 79, 26, 10.1016/j.quascirev.2012.11.025
Olsen, 2003, On the nature of the factors that control spring bloom development at the entrance to the Barents Sea and their interannual variability, Sarsia, 88, 379, 10.1080/00364820310003145
Oziel, 2016, The Barents Sea frontal zones and water masses variability (1980–2011), Ocean Sci., 12, 169, 10.5194/os-12-169-2016
Perovich, 2012, Albedo evolution of seasonal Arctic sea ice, Geophys. Res. Lett., 39, L08501, 10.1029/2012GL051432
Perovich, 2009, Loss of sea ice in the Arctic, Annu. Rev. Mar. Sci., 1, 417, 10.1146/annurev.marine.010908.163805
Pieńkowski, 2017, Arctic sea-ice proxies: comparisons between biogeochemical and micropalaeontological reconstructions in a sediment archive from Arctic Canada, Holocene, 27, 665, 10.1177/0959683616670466
Polyak, 2016, Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies, Holocene, 26, 1810, 10.1177/0959683616645939
Quinlan, 1986, Induction of decision trees, Mach. Learn., 1, 81, 10.1007/BF00116251
Quinlan J. R. (1993) C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc., San Mateo, California.
R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. <https://www.r-project.org>.
Rampen, 2010, A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity, Limnol. Oceanogr., 55, 91, 10.4319/lo.2010.55.1.0091
Ratkova, 2005, Sea ice algae in the White and Barent seas: composition and origin, Polar Res., 24, 95, 10.1111/j.1751-8369.2005.tb00143.x
Reimann, 2000, Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data, Environ. Geol., 39, 1001, 10.1007/s002549900081
Reimann, 2002, Factor analysis applied to regional geochemical data: problems and possibilities, Appl. Geochem., 17, 185, 10.1016/S0883-2927(01)00066-X
Ribeiro, 2017, Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: spatial distribution and implications for palaeoenvironmental studies, Ambio, 46, 106, 10.1007/s13280-016-0894-2
Ringrose A. E. (2012) Temporal and vertical distributions of IP25 and other lipid biomarkers in sea ice from Resolute Bay, Nunavut, Canada. M.Phil. thesis, Plymouth Univ.
Rokach, 2005, Decision trees, 165
Rowland, 2001, Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera, Phytochemistry, 58, 717, 10.1016/S0031-9422(01)00318-1
Sakshaug, 2009
Sammut, 2017
Schlitzer R. (2017) Ocean Data View. ver. 4.7.10. <http://odv.awi.de>.
Smedsrud, 2013, The role of the Barents Sea in the Arctic climate system, Rev. Geophys., 51, 415, 10.1002/rog.20017
Signorini, 2009, Environmental factors controlling the Barents Sea spring-summer phytoplankton blooms, Geophys. Res. Lett., 36, L10604, 10.1029/2009GL037695
Smik, 2017, Distributions of the Arctic sea ice biomarker proxy IP25 and two phytoplanktonic biomarkers in surface sediments from West Svalbard, Org. Geochem., 105, 39, 10.1016/j.orggeochem.2017.01.005
Smik, 2016, Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: a further development of the PIP25 index, Org. Geochem., 92, 63, 10.1016/j.orggeochem.2015.12.007
Søreide, 2013, Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers, Mar. Biol. Res., 9, 831, 10.1080/17451000.2013.775457
Sørensen, 1948, A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons, Biol. Skr., 5, 1
Sorteberg, 2006, Atmospheric forcing on the Barents Sea winter ice extent, J. Clim., 19, 4772, 10.1175/JCLI3885.1
Spielhagen, 2011, Enhanced modern heat transfer to the Arctic by warm Atlantic Water, Science, 331, 450, 10.1126/science.1197397
Stein, 2017, Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean), J. Quatern. Sci., 32, 362, 10.1002/jqs.2929
Stein, 2016, Evidence for ice-free summers in the late Miocene central Arctic Ocean, Nat. Commun., 7, 11148, 10.1038/ncomms11148
Strass, 1996, Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability, Polar Biol., 16, 409, 10.1007/BF02390423
Stoynova, 2013, Insights into Circum-Arctic sea ice variability from molecular geochemistry, Quat. Sci. Rev., 79, 63, 10.1016/j.quascirev.2012.10.006
Stroeve, 2012, The Arctic’s rapidly shrinking sea ice cover: a research synthesis, Clim. Change, 110, 1005, 10.1007/s10584-011-0101-1
Templ, 2008, Cluster analysis applied to regional geochemical data: problems and possibilities, Appl. Geochem., 23, 2198, 10.1016/j.apgeochem.2008.03.004
Therneau T., Atkinson B. and Ripley B. (2015) Rpart: Recursive Partitioning and Regression Trees. ver. 4.1-10. <https://cran.r-project.org/package=rpart>.
Thorsnes, 2009, MAREANO – an introduction, Nor. J. Geol., 89, 3
Torgo, 2010
Vancoppenolle, 2013, Role of sea ice in global biochemical cycles: emerging views and challenges, Quat. Sci. Rev., 79, 207, 10.1016/j.quascirev.2013.04.011
Vare, 2010, A biomarker-based reconstruction of sea ice conditions for the Barents Sea in recent centuries, Holocene, 20, 637, 10.1177/0959683609355179
Vare, 2009, Sea ice variations in the central Canadian Arctic Archipelago during the Holocene, Quat. Sci. Rev., 28, 1354, 10.1016/j.quascirev.2009.01.013
Vayssières, 2000, Classification trees: an alternative non-parametric approach for predicting species distributions, J. Veg. Sci., 11, 679, 10.2307/3236575
Vermeesch, 2006, Tectonic discrimination of basalts with classification trees, Geochim. Cosmochim. Acta, 70, 1839, 10.1016/j.gca.2005.12.016
Volkman, 1986, A review of sterol markers for marine and terrigenous organic matter, Org. Geochem., 9, 83, 10.1016/0146-6380(86)90089-6
Volkman, 2006, Lipid markers for marine organic matter, 27
Von Quillfeldt, 2000, Common diatom species in Arctic spring blooms: their distribution and abundance, Bot. Mar., 43, 499, 10.1515/BOT.2000.050
Walczowski, 2011, Influence of the West Spitsbergen Current on the local climate, Int. J. Climatol., 31, 1088, 10.1002/joc.2338
Walsh, 2017, A database for depicting Arctic sea ice variations back to 1850, Geogr. Rev., 107, 89, 10.1111/j.1931-0846.2016.12195.x
Wassmann, 1999, Spring bloom development in the Marginal Ice Zone and the Central Barents Sea, Mar. Ecol., 20, 321, 10.1046/j.1439-0485.1999.2034081.x
Weckström, 2013, Evaluation of the sea ice proxy IP25 against observational and diatom proxy data in the SW Labrador Sea, Quat. Sci. Rev., 79, 53, 10.1016/j.quascirev.2013.02.012
Werner, 2011, Atlantic Water advection to the eastern Fram Strait—multiproxy evidence for late Holocene variability, Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 264, 10.1016/j.palaeo.2011.05.030
Wickham H., Hester J., Francois R., R Core Team, RStudio Team, Jylänki J. and Jørgensen M. (2017) Read Rectangular Text Data. ver. 1.1.0. <http://readr.tidyverse.org>, <https://github.com/tidyverse/readr>.
Willmes, 2016, Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003–2015, Remote Sens., 8, 4, 10.3390/rs8010004
Xiao, 2015, Sea-ice distribution in the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface sediments, Geochim. Cosmochim. Acta, 155, 16, 10.1016/j.gca.2015.01.029
Xiao, 2013, Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and sea-ice coverage, Quat. Sci. Rev., 79, 40, 10.1016/j.quascirev.2012.11.028
Xiao, 2015, MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: reconstruction from biomarkers, Paleoceanography, 30, 969, 10.1002/2015PA002814
Yan Y. (2016) Machine Learning Evaluation Metrics. ver. 1.1.1. <http://github.com/yanyachen/MLmetrics>.
Yunker, 2005, Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: a multivariate analysis of lipid biomarkers, Deep-Sea Res. Pt. II, 52, 3478, 10.1016/j.dsr2.2005.09.008
Zaborska, 2008, Recent sediment accumulation rates for the Western margin of the Barents Sea, Deep-Sea Res. Pt. II, 55, 2352, 10.1016/j.dsr2.2008.05.026