Preface to the Special Issue on Extreme Cold Events from East Asia to North America in Winter 2020/21

Advances in Atmospheric Sciences - Tập 39 Số 4 - Trang 543-545 - 2022
Mu Mu1, Dehai Luo2, Fei Zheng3
1Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
2CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
3International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 5254–5271, https://doi.org/10.1175/JCLI-D-14-00589.1.

Basu, S., X. D. Zhang, I. Polyakov, and U. S. Bhatt, 2013: North American winter-spring storms: Modeling investigation on tropical Pacific sea surface temperature impacts. Geophys. Res. Lett., 40, 5228–5233, https://doi.org/10.1002/grl.50990.

Bueh, C., J. B. Peng, D. W. Lin, and B. M. Chen, 2022: On the two successive supercold waves straddling the end of 2020 and the beginning of 2021. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1107-x.

Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637, https://doi.org/10.1038/ngeo2234.

Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y.

Cohen, J., L. Agel, M. Barlow, C. I. Garfinkel, and I. White, 2021: Linking Arctic variability and change with extreme winter weather in the United States. Science, 373(6559), 1116–1121, https://doi.org/10.1126/science.abi9167.

Dai, A. G., and M. R. Song, 2020: Little influence of Arctic amplification on mid-latitude climate. Nature Climate Change, 10, 231–237, https://doi.org/10.1038/s41558-020-0694-3.

Dai, G. K., C. X. Li, Z. Han, D. H. Luo, and Y. Yao, 2022: The nature and predictability of the east Asian extreme cold events of 2020/21. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1057-3.

Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39(6), L06801, https://doi.org/10.1029/2012GL051000.

Kug, J. S., J. H. Jeong, Y. S. Jang, B. M. Kim, C. K. Folland, S. K. Min, and S. W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8(10), 759–762, https://doi.org/10.1038/ngeo2517.

Li, J. P., T. J. Xie, X. X. Tang, H. Wang, C. Sun, J. Feng, F. Zheng, and R. Q. Ding, 2022: Influence of the NAO on wintertime surface air temperature over East Asia: Multidecadal variability and decadal prediction. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1075-1.

Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074–4079, https://doi.org/10.1073/pnas.1114910109.

Luo, D. H., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. Franzke, 2016: The impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 3925–3947.

Luo, D. H., X. D. Chen, J. Overland, I. Simmonds, Y. T. Wu, and P. F. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J. Climate, 32, 4235–4261, https://doi.org/10.1175/JCLI-D-18-0449.1.

McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geoscience, 9, 838–842, https://doi.org/10.1038/ngeo2820.

Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869–873, https://doi.org/10.1038/ngeo2277.

Newson, R. L., 1973: Response of a general circulation model of the atmosphere to removal of the arctic ice-cap. Nature, 241, 39–40, https://doi.org/10.1038/241039b0.

Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected.. J. Climate, 28, 7917–7932, https://doi.org/10.1175/JCLI-D-14-00822.1.

Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

Shepherd, T. G., 2016: Effects of a warming Arctic. Science, 353, 989–990, https://doi.org/10.1126/science.aag2349.

Sun, L. T., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures.. Geophys. Res. Lett., 43, 5345–5352, https://doi.org/10.1002/2016GL069024.

Tang, Q. H., X. J. Zhang, X. H. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8(1), 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

Yao, Y., D. H. Luo, A. G. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to arctic warming. Part I: Insights from observational analyses. J. Climate, 30, 3549–3568, https://doi.org/10.1175/JCLI-D-16-0261.1.

Yao, Y., W. Q. Zhang, D. H. Luo, L. H. Zhong, and L. Pei, 2022: Seasonal cumulative effect of Ural blocking episodes on the frequent cold events in China during the early winter of 2020/21. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1100-4.

Yu, Y. Y., Y. F. Li, R. C. Ren, M. Cai, Z. Y. Guan, and W. Huang, 2022: An isentropic mass circulation view on the extreme cold events in 2020/2021 winter. Adv. Atmos. Sci., in press, https://doi.org/10.1007/s00376-021-1289-2.

Zhang, X. D., Y. F. Fu, Z. Han, J. E. Overland, A. Rinke, H. Tang, T. Vihma, and M. Y. Wang, 2022a: Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1229-1.

Zhang, Y. X., D. Si, Y. H. Ding, D. B. Jiang, Q. Q. Li, and G. F. Wang, 2022b: Influence of major stratospheric sudden warming on the unprecedented cold wave in East Asia in January 2021. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-022-1318-9.

Zheng, F., and Coauthors, 2022a: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1033-y.

Zheng, F., and Coauthors, 2022b: The predictability of ocean environments that contributed to the 2020/21 extreme cold events in China: 2020/21 La Niña and 2020 Arctic sea ice loss. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1130-y.