The effects of sulphur poisoning on the microstructure, composition and oxygen transport properties of perovskite membranes coated with nanoscale alumina layers
Tài liệu tham khảo
Sunarso, 2008, Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 320, 13, 10.1016/j.memsci.2008.03.074
Dong, 2011, Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications, Chem. Commun., 47, 10886, 10.1039/c1cc13001c
Thursfield, 2012, Chemical looping and oxygen permeable ceramic membranes for hydrogen production – a review, Energy Environ. Sci., 5, 7421, 10.1039/c2ee03470k
Xie, 2013, Influence of sulfur impurities on the stability of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cells, Solid State Ionics, 249–250, 177, 10.1016/j.ssi.2013.08.005
Wei, 2013, Dense ceramic oxygen permeable membranes and catalytic membrane reactors, Chem. Eng. J., 220, 185, 10.1016/j.cej.2013.01.048
Alqaheem, 2014, The impact of sulfur contamination on the performance of La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen transport membranes,, Solid State Ionics, 262, 262, 10.1016/j.ssi.2014.01.011
Gao, 2014, Poisoning effect of SO2 on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite hollow fiber membranes, J. Membr. Sci., 455, 341, 10.1016/j.memsci.2013.12.073
Boldrin, 2016, Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis, Chem. Rev., 116, 13633, 10.1021/acs.chemrev.6b00284
Wang, 2014, Sulfur deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode materials of solid oxide fuel cells, J. Electrochem. Soc., 161, F1133, 10.1149/2.0041412jes
Granneman, 2007, Batch ALD: characteristics, comparison with single wafer ALD, and examples, Surf. Coating. Technol., 201, 8899, 10.1016/j.surfcoat.2007.05.009
Endler-Schuck, 2015, The chemical oxygen surface exchange and bulk diffusion coefficient determined by impedance spectroscopy of porous La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes,, Solid State Ionics, 269, 67, 10.1016/j.ssi.2014.11.018
Heuer, 2008, Oxygen and aluminum diffusion in α-Al2O3: how much do we really understand?, J. Eur. Ceram. Soc., 28, 1495, 10.1016/j.jeurceramsoc.2007.12.020
Huang, 2017, Chromium poisoning effects on surface exchange kinetics of La0.6Sr0.4Co0.2Fe0.8O3−δ, ACS Appl. Mater. Interfaces, 9, 16660, 10.1021/acsami.7b02762
Ni, 2016, Degradation of (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3−δ solid oxide fuel cell cathodes at the nanometer scale and below, ACS Appl. Mater. Interfaces, 8, 17360, 10.1021/acsami.6b05290
Zhao, 2014, Raman spectroscopy study of chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3-δ cathode of solid oxide fuel cells, J. Electrochem. Soc., 161, 10.1149/2.018406jes
Chen, 2009, High-pressure Raman study on the BaSO4–SrSO4 series, Solid State Commun., 149, 2050, 10.1016/j.ssc.2009.08.023
Griffith, 1970, Raman studies on rock-forming minerals. Part II. Minerals containing MO3, MO4, and MO6 groups, J. Chem. Soc. A, 286, 10.1039/j19700000286
Harvey, 2012, Diffusion of La and Mn in Ba0.5Sr0.5Co0.8Fe0.2O3−δ polycrystalline ceramics, Energy Environ. Sci., 5, 5803, 10.1039/C1EE02740A
Chiabrera, 2019, Engineering transport in manganites by tuning local nonstoichiometry in grain boundaries, Adv. Mater., 31
Kwak, 2018, In situ synthesis of supported metal nanocatalysts through heterogeneous doping, Nat. Commun., 9, 4829, 10.1038/s41467-018-07050-y
Neagu, 2013, 4.15-Perovskite Defect Chemistry as Exemplified by Strontium Titanate, 397
Iwahara, 2009, Ionic Conduction in Perovskite-type Compounds
Bouwmeester, 1997, ChemInform abstract: dense ceramic membranes for oxygen separation, ChemInform, 28