Image-based activity pattern segmentation using longitudinal data of the German Mobility Panel
Tài liệu tham khảo
Allahviranloo, M., Regue, R., Recker, W., 2014. Pattern Clustering and Activity Inference, in:TRB 93rd Annual Meeting Compendium of Papers, Washington, D.C.
Anable, 2005, ‘Complacent Car Addicts’ or ‘Aspiring Environmentalists’? Identifying travel behaviour segments using attitude theory, Transp. Policy, 12, 65, 10.1016/j.tranpol.2004.11.004
2015
Berger, 2004, Typologiebildung und Erklärung des Aktivitäten-(Verkehrs-)verhaltens – ein Multimethodenansatz unter Verwendung der Optimal Matching Technik, Dissertation.
Beyerer, 2012, 940
Chlond, 2018, Workshop Synthesis: Behavioral changes in travel – challenges and implications for their identification and measurement, Transp. Res. Procedia, 32, 563, 10.1016/j.trpro.2018.10.022
Collum, 2015, Combining attitude theory and segmentation analysis to understand travel mode choice at a national park, Journal of Outdoor Recreation and Tourism, 9, 17, 10.1016/j.jort.2015.03.003
Ectors, 2016, A Generic Data-driven Sequential Clustering Algorithm Determining Activity Skeletons, Procedia Comput. Sci., 83, 34, 10.1016/j.procs.2016.04.096
Götz, K., Jahn, T., Schultz, I., 1998. Mobilitätsstile. Ein sozial-ökologischer Untersuchungsansatz ; Arbeitsbericht ; Subprojekt 1: Mobilitätsleitbilder und Verkehrsverhalten. Öko-Inst, Freiburg Breisgau, 344 S.
Hanson, 1986, Classification issues in the analysis of complex travel behavior, Transportation, 13, 271, 10.1007/BF00148620
Harris, 2013
Heuwinkel, 1981, 227
Hildebrand, 2003, Dimensions in elderly travel behaviour: A simplified activity-based model using lifestyle clusters, Transportation, 30, 285, 10.1023/A:1023949330747
Hilgert, 2018, Are Activity Patterns Stable or Variable? Analysis of Three-Year Panel Data, Transp. Res. Rec., 2672, 46, 10.1177/0361198118773557
Hoogendoorn-Lanser, 2015, The Netherlands Mobility Panel: An Innovative Design Approach for Web-based Longitudinal Travel Data Collection, Transp. Res. Procedia, 11, 311, 10.1016/j.trpro.2015.12.027
Hunecke, 2010, Attitude-Based Target Groups to Reduce the Ecological Impact of Daily Mobility Behavior, Environment and Behavior, 42, 3, 10.1177/0013916508319587
Kunert, 1994, Weekly mobility of life cycle groups, Transportation, 21, 271, 10.1007/BF01099214
Lipps, 2001, Modellierung der individuellen Verhaltensvariationen bei der Verkehrsentstehung, Dissertation. Karlsruhe, 147 pp
Maat, C. Arentze, T.A., 2003. Variation of activity patterns with features of the spatial context., in:TRB 82nd Annual Meeting. TRB 82nd Annual Meeting, Washington, D.C.
Magdolen, M., Ecke, L., Hilgert, T., Chlond, B., Vortisch, P., 2020a. Identification of Non-Routine Tours in Everyday Travel Behavior, in:99th Transportation Research Board Annual Meeting, Washington D.C., January 12 - 16, 2020.
Magdolen, M., von Behren, S., Chlond, B., Hunecke, M., Vortisch, P., 2019. Combining attitudes and travel behavior - A comparison of urban mobility types identified in Shanghai, Berlin and San Francisco, in:TRB 98th Annual Meeting Compendium of Papers. TRB 98th Annual Meeting Compendium of Papers, Washington, D.C.
Magdolen, M., von Behren, S., Chlond, B., Vortisch, P., 2020b. Traveling Long-Distance with Bad Conscience? Discrepancies Between Everyday and Long-Distance Travel of Urbanites, in:TRB99th Annual Meeting, Washington D.C.
Niklas, 2020, Electric Factor—A Comparison of Car Usage Profiles of Electric and Conventional Vehicles by a Probabilistic Approach, WEVJ, 11, 36, 10.3390/wevj11020036
Niklas, 2020, Premium factor – Analyzing usage of premium cars compared to conventional cars, Research in Transportation Business & Management, 100456
Niklas, 2020, Spatial Factor—Using a Random Forest Classification Model to Measure an Internationally Comparable Urbanity Index, Urban Science, 4, 36, 10.3390/urbansci4030036
Oostendorp, 2019, Developing a user typology considering unimodal and intermodal mobility behavior: a cluster analysis approach using survey data, Eur. Transp. Res. Rev., 11, 10.1186/s12544-019-0369-1
Pas, E.I., 1980. Towards the understanding of urban travel behavior trough the classification of daily urban/activity patterns. Dissertation. Evanston.
Prillwitz, 2011, Moving towards sustainability? Mobility styles, attitudes and individual travel behaviour, J. Transp. Geogr., 19, 1590, 10.1016/j.jtrangeo.2011.06.011
Salomon, 1983, The Use of the Life-Style Concept in Travel Demand Models, Environ Plan A, 15, 623, 10.1068/a150623
Schlich, R., 2004. Verhaltenshomogene Gruppen in Längsschnitterhebungen. Dissertation. Zürich, 162pp.
Schmiedel, R., 1984. Bestimmung verhaltensähnlicher Personenkreise für die Verkehrsplanung. Dissertation. Karlsruhe.
Schöppe, 1983, Demografisch-soziologische Personengruppen und ihre Anwendung in der Verkehrsplanung, Die Straße, 24, 353
von Behren, S., Minster, C., Magdolen, M., Chlond, B., Hunecke, M., Vortisch, P., 2018. Bringing travel behavior and attitudes together: An integrated survey approach for clustering urban mobility types, in:TRB 97th Annual Meeting Compendium of Papers, Washington, D.C.
Wittwer, 2014
Xianting, Q., Pan, W., 2016. A Density-Based Clustering Algorithm for High-Dimensional Data with Feature Selection, in:International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII). International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China. 03.12.2016. IEEE, pp.114–118.
Zhao, 2015, Exploratory Analysis of a Smartphone-Based Travel Survey in Singapore, Transp. Res. Rec., 2494, 45, 10.3141/2494-06