Small eigenvalues of geometrically finite manifolds

The Journal of Geometric Analysis - Tập 14 Số 2 - Trang 281-290 - 2004
Hamenstädt, Ursula1
1Mathematisches Institut der Universität, Bonn, Germany

Tóm tắt

Let M be a complete geometrically finite manifold of bounded negative curvature, infinite volume, and dimension at least 3.We give both a lower bound for the bottom of the spectrum of M and an upper bound for the number of the small eigenvalues of M. These bounds only depend on the dimension, curvature bounds and the volume of the oneneighborhood of the convex core.

Tài liệu tham khảo

citation_journal_title=Duke Math. J.; citation_title=Geometrical finiteness with variable negative curvature; citation_author=B. Bowditch; citation_volume=77; citation_publication_date=1995; citation_pages=229-274; citation_doi=10.1215/S0012-7094-95-07709-6; citation_id=CR1 citation_journal_title=J. Reine Angew. Math.; citation_title=A lower bound on λ0 for geometrically finite hyperbolic n-manifolds; citation_author=M. Burger, R. Canary; citation_volume=454; citation_publication_date=1994; citation_pages=37-57; citation_id=CR2 citation_journal_title=J. Geom. Anal.; citation_title=Tubes and eigenvalues for negatively curved manifolds; citation_author=P. Buser, B. Colbois, J. Dodziuk; citation_volume=3; citation_issue=1; citation_publication_date=1993; citation_pages=1-26; citation_doi=10.1007/BF01895513; citation_id=CR3 citation_journal_title=Comm. Pure Appl. Math.; citation_title=Differential equations on Riemannian manifolds and their geometric applications; citation_author=S.Y. Cheng, S.T. Yau; citation_volume=28; citation_publication_date=1975; citation_pages=333-354; citation_doi=10.1002/cpa.3160280303; citation_id=CR4 citation_journal_title=Inv. Math.; citation_title=Hausdorff dimension of limit sets I; citation_author=K. Corlette; citation_volume=102; citation_publication_date=1990; citation_pages=521-542; citation_doi=10.1007/BF01233439; citation_id=CR5 citation_title=Spectral Theory and Differential Operators; citation_publication_date=1995; citation_id=CR6; citation_author=E.B. Davies; citation_publisher=Cambridge University Press citation_journal_title=J. Diff. Geo.; citation_title=Lower bounds for λ1 on a finite-volume hyperbolic manifold; citation_author=J. Dodziuk, B. Randol; citation_volume=24; citation_publication_date=1986; citation_pages=133-139; citation_id=CR7 Fissmer, K. and Hamenstädt, U. Spectral convergence of manifold pairs, to appear inComm. Math. Helv. citation_journal_title=J. Diff. Geom.; citation_title=Geometry of horospheres; citation_author=E. Heintze, H.J. Im Hof; citation_volume=12; citation_publication_date=1977; citation_pages=481-491; citation_id=CR9 citation_journal_title=J. Diff. Geom.; citation_title=Related aspects of positivity in Riemannian geometry; citation_author=D. Sullivan; citation_volume=25; citation_publication_date=1987; citation_pages=327-351; citation_id=CR10