Optimized method for Helmholtz resonator design formed by perforated boards
Tài liệu tham khảo
Jeong, 2015, Reproducibility of the random incidence absorption coefficient converted from the sabine absorption coefficient, Acta Acust United Acust, 101, 10.3813/AAA.918808
Cox TJ, D’Antonio P. Acoustic absorbers and diffusers. 3rd ed. New York: Taylor; 2017. https://doi.org/10.4324/9781482266412.
Ingard, 1953, On the theory and design of acoustic resonators, J Acoust Soc Am, 25, 1037, 10.1121/1.1907235
Smits, 1951, Sound absorption by slit resonators, Acta Acust United Acust, 1
Kristiansen, 1994, On the design of resonant absorbers using a slotted plate, Appl Acoust, 43, 10.1016/0003-682X(94)90039-6
Cremer L, Müller HA, Northwood TD. Principles and Applications of Room Acoustics. vol. 37. New York, NY, USA: Sole distributor in the USA and Canada, Elsevier Science Pub. Co.; 1984. https://doi.org/10.1063/1.2916055.
Rschevkin SN. Gestaltung von Resonanzschallschallschluckern und deren Verwendung fur die Nachhallregelung und Schallabsorption. Hochfrequenztechnik Und Electrokustik 1959;Bd.67:128–35.
Davern, 1977, Perforated facings backed with porous materials as sound absorbers-An experimental study, Appl Acoust, 10, 10.1016/0003-682X(77)90019-6
Lee, 2006, Acoustic impedance of perforations in contact with fibrous material, J Acoust Soc Am, 119, 10.1121/1.2188354
Delany, 1970, Acoustical properties of fibrous absorbent materials, Appl Acoust, 1970, 105, 10.1016/0003-682X(70)90031-9
Garai, 2005, A simple empirical model of polyester fibre materials for acoustical applications, Appl Acoust, 66, 1383, 10.1016/j.apacoust.2005.04.008
Qunli, 1988, Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam, Appl Acoust, 25, 141, 10.1016/0003-682X(88)90090-4
Cummings, 1994, Acoustic properties of reticulated plastic foams, J Sound Vib, 175, 115, 10.1006/jsvi.1994.1315
Muehleisen, 2005, Measurements and empirical model of the acoustic properties of reticulated vitreous carbon, J Acoust Soc Am, 117, 536, 10.1121/1.1850343
del Rey, 2012, An empirical modelling of porous sound absorbing materials made of recycled foam, Appl Acoust, 73, 604, 10.1016/j.apacoust.2011.12.009
Voronina, 2003, A new empirical model for the acoustic properties of loose granular media, Appl Acoust, 64, 415, 10.1016/S0003-682X(02)00105-6
Mechel FP. Formulas of acoustics. vol. 57. 2nd ed. New York: Springer; 2009. https://doi.org/10.3397/1.3059785.
Miki, 1990, Acoustical properties of porous materials. Modifications of Delany-Bazley models, J Acoust Soc Jpn (E), 11, 19, 10.1250/ast.11.19
Allard J-F, Atalla N. Propagation of sound in porous media. 2nd ed. Hoboken, N.J.: Wiley; 2009.
Congyun, 2005, A method for calculating the absorption coefficient of a multi-layer absorbent using the electro-acoustic analogy, Appl Acoust, 66, 879, 10.1016/j.apacoust.2004.10.002
Tang, 2005, On Helmholtz resonators with tapered necks, J Sound Vib, 279, 1085, 10.1016/j.jsv.2003.11.032
Park, 2013, Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption, J Sound Vib, 332, 4895, 10.1016/j.jsv.2013.04.029
Vigran, 2014, The acoustic properties of panels with rectangular apertures, J Acoust Soc Am, 135, 2777, 10.1121/1.4871363
Mercier, 2017, Influence of the neck shape for Helmholtz resonators, J Acoust Soc Am, 142, 3703, 10.1121/1.5017735
Carbajo, 2020, Multi-layer perforated panel absorbers with oblique perforations, Appl Acoust, 169, 10.1016/j.apacoust.2020.107496
Dosch, 2016, Radiative feedback in Helmholtz resonators with more than one opening, J Acoust Soc Am, 140, 3576, 10.1121/1.4966268
Zhao, 2016, Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators, Appl Acoust, 114, 92, 10.1016/j.apacoust.2016.07.013
de Bedout, 1997, Adaptive-passive noise control with self-tuning Helmholtz resonators, J Sound Vib, 202, 109, 10.1006/jsvi.1996.0796
Mao, 2018, Development of a sweeping Helmholtz resonator for noise control, Appl Acoust, 141, 348, 10.1016/j.apacoust.2018.07.031
Li, 2007, Acoustically coupled model of an enclosure and a Helmholtz resonator array, J Sound Vib, 305, 272, 10.1016/j.jsv.2007.04.009
Klaus, 2014, On the adjustment of Helmholtz resonators, Appl Acoust, 77, 37, 10.1016/j.apacoust.2013.08.011
Doutres O, Atalla N, Osman H. Modeling and experimental validation of cellular porous material with large resonant inclusions. INTERNOISE 2014 - 43rd international congress on noise control engineering: improving the world through noise control 2014;3502. https://doi.org/10.1121/1.4921027.
Langfeldt, 2020, Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators, J Sound Vib, 476, 10.1016/j.jsv.2020.115309
Asakura, 2021, Numerical investigation of the sound-insulation effect of a suspended ceiling structure with arrayed Helmholtz resonators by the finite-difference time-domain method, Appl Acoust, 172, 10.1016/j.apacoust.2020.107601
Nespěšný O. Rozbor vlastností materiálu kompozitních desek na bázi cementu a organických vláken v návaznosti na jeho využití v rámci návrhu interiérových schodišť 2020.
ČSN EN ISO 354 (730535) Akustika – Měření zvukové pohltivosti v dozvukové místnosti 2003;354:1–24.
ISO 354. Acoustics — Measurement of sound absorption in a reverberation room 2003.
van Rossum, 2009
Python-acoustics: A Python library aimed at acousticians. 2021.
Harris, 2020, Array programming with NumPy, Nature, 585, 357, 10.1038/s41586-020-2649-2
Virtanen, 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat Methods, 17, 261, 10.1038/s41592-019-0686-2
Nocedal J, Wright SJ. Numerical optimization. 2nd editio. New York, NY: Springer; 2006. https://doi.org/10.1201/b19115-11.
McKinney, 2010, Data structures for statistical computing in Python, 56, 10.25080/Majora-92bf1922-00a
REW - Room EQ wizard room acoustics software 2021.
