Optimized method for Helmholtz resonator design formed by perforated boards

Applied Acoustics - Tập 184 - Trang 108341 - 2021
David Jun1, Ondrej Nespesny1, Jan Pencik1, Zuzana Fisarova1, Ales Rubina1
1Faculty of Civil Engineering, Brno University of Technology, Veveri 331/95, 602 00 Brno, Czech Republic

Tài liệu tham khảo

Jeong, 2015, Reproducibility of the random incidence absorption coefficient converted from the sabine absorption coefficient, Acta Acust United Acust, 101, 10.3813/AAA.918808 Cox TJ, D’Antonio P. Acoustic absorbers and diffusers. 3rd ed. New York: Taylor; 2017. https://doi.org/10.4324/9781482266412. Ingard, 1953, On the theory and design of acoustic resonators, J Acoust Soc Am, 25, 1037, 10.1121/1.1907235 Smits, 1951, Sound absorption by slit resonators, Acta Acust United Acust, 1 Kristiansen, 1994, On the design of resonant absorbers using a slotted plate, Appl Acoust, 43, 10.1016/0003-682X(94)90039-6 Cremer L, Müller HA, Northwood TD. Principles and Applications of Room Acoustics. vol. 37. New York, NY, USA: Sole distributor in the USA and Canada, Elsevier Science Pub. Co.; 1984. https://doi.org/10.1063/1.2916055. Rschevkin SN. Gestaltung von Resonanzschallschallschluckern und deren Verwendung fur die Nachhallregelung und Schallabsorption. Hochfrequenztechnik Und Electrokustik 1959;Bd.67:128–35. Davern, 1977, Perforated facings backed with porous materials as sound absorbers-An experimental study, Appl Acoust, 10, 10.1016/0003-682X(77)90019-6 Lee, 2006, Acoustic impedance of perforations in contact with fibrous material, J Acoust Soc Am, 119, 10.1121/1.2188354 Delany, 1970, Acoustical properties of fibrous absorbent materials, Appl Acoust, 1970, 105, 10.1016/0003-682X(70)90031-9 Garai, 2005, A simple empirical model of polyester fibre materials for acoustical applications, Appl Acoust, 66, 1383, 10.1016/j.apacoust.2005.04.008 Qunli, 1988, Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam, Appl Acoust, 25, 141, 10.1016/0003-682X(88)90090-4 Cummings, 1994, Acoustic properties of reticulated plastic foams, J Sound Vib, 175, 115, 10.1006/jsvi.1994.1315 Muehleisen, 2005, Measurements and empirical model of the acoustic properties of reticulated vitreous carbon, J Acoust Soc Am, 117, 536, 10.1121/1.1850343 del Rey, 2012, An empirical modelling of porous sound absorbing materials made of recycled foam, Appl Acoust, 73, 604, 10.1016/j.apacoust.2011.12.009 Voronina, 2003, A new empirical model for the acoustic properties of loose granular media, Appl Acoust, 64, 415, 10.1016/S0003-682X(02)00105-6 Mechel FP. Formulas of acoustics. vol. 57. 2nd ed. New York: Springer; 2009. https://doi.org/10.3397/1.3059785. Miki, 1990, Acoustical properties of porous materials. Modifications of Delany-Bazley models, J Acoust Soc Jpn (E), 11, 19, 10.1250/ast.11.19 Allard J-F, Atalla N. Propagation of sound in porous media. 2nd ed. Hoboken, N.J.: Wiley; 2009. Congyun, 2005, A method for calculating the absorption coefficient of a multi-layer absorbent using the electro-acoustic analogy, Appl Acoust, 66, 879, 10.1016/j.apacoust.2004.10.002 Tang, 2005, On Helmholtz resonators with tapered necks, J Sound Vib, 279, 1085, 10.1016/j.jsv.2003.11.032 Park, 2013, Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption, J Sound Vib, 332, 4895, 10.1016/j.jsv.2013.04.029 Vigran, 2014, The acoustic properties of panels with rectangular apertures, J Acoust Soc Am, 135, 2777, 10.1121/1.4871363 Mercier, 2017, Influence of the neck shape for Helmholtz resonators, J Acoust Soc Am, 142, 3703, 10.1121/1.5017735 Carbajo, 2020, Multi-layer perforated panel absorbers with oblique perforations, Appl Acoust, 169, 10.1016/j.apacoust.2020.107496 Dosch, 2016, Radiative feedback in Helmholtz resonators with more than one opening, J Acoust Soc Am, 140, 3576, 10.1121/1.4966268 Zhao, 2016, Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators, Appl Acoust, 114, 92, 10.1016/j.apacoust.2016.07.013 de Bedout, 1997, Adaptive-passive noise control with self-tuning Helmholtz resonators, J Sound Vib, 202, 109, 10.1006/jsvi.1996.0796 Mao, 2018, Development of a sweeping Helmholtz resonator for noise control, Appl Acoust, 141, 348, 10.1016/j.apacoust.2018.07.031 Li, 2007, Acoustically coupled model of an enclosure and a Helmholtz resonator array, J Sound Vib, 305, 272, 10.1016/j.jsv.2007.04.009 Klaus, 2014, On the adjustment of Helmholtz resonators, Appl Acoust, 77, 37, 10.1016/j.apacoust.2013.08.011 Doutres O, Atalla N, Osman H. Modeling and experimental validation of cellular porous material with large resonant inclusions. INTERNOISE 2014 - 43rd international congress on noise control engineering: improving the world through noise control 2014;3502. https://doi.org/10.1121/1.4921027. Langfeldt, 2020, Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators, J Sound Vib, 476, 10.1016/j.jsv.2020.115309 Asakura, 2021, Numerical investigation of the sound-insulation effect of a suspended ceiling structure with arrayed Helmholtz resonators by the finite-difference time-domain method, Appl Acoust, 172, 10.1016/j.apacoust.2020.107601 Nespěšný O. Rozbor vlastností materiálu kompozitních desek na bázi cementu a organických vláken v návaznosti na jeho využití v rámci návrhu interiérových schodišť 2020. ČSN EN ISO 354 (730535) Akustika – Měření zvukové pohltivosti v dozvukové místnosti 2003;354:1–24. ISO 354. Acoustics — Measurement of sound absorption in a reverberation room 2003. van Rossum, 2009 Python-acoustics: A Python library aimed at acousticians. 2021. Harris, 2020, Array programming with NumPy, Nature, 585, 357, 10.1038/s41586-020-2649-2 Virtanen, 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat Methods, 17, 261, 10.1038/s41592-019-0686-2 Nocedal J, Wright SJ. Numerical optimization. 2nd editio. New York, NY: Springer; 2006. https://doi.org/10.1201/b19115-11. McKinney, 2010, Data structures for statistical computing in Python, 56, 10.25080/Majora-92bf1922-00a REW - Room EQ wizard room acoustics software 2021.