The Peano-Baker series

Proceedings of the Steklov Institute of Mathematics - Tập 275 - Trang 155-159 - 2012
Michael Baake1, Ulrike Schlägel2
1Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada

Tóm tắt

This note reviews the Peano-Baker series and its use to solve the general linear system of ODEs. The account is elementary and self-contained, and is meant as a pedagogic introduction to this approach, which is well known but usually treated as a folklore result or as a purely formal tool. Here, a simple convergence result is given, and two examples illustrate that the series can be used explicitly as well.

Tài liệu tham khảo

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965). H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis (W. de Gryuter, Berlin, 1990). H. F. Baker, “Note on the Integration of Linear Differential Equations,” Proc. London Math. Soc., Ser. 2, 2, 293–296 (1905). R. W. Brockett, Finite Dimensional Linear Systems (Wiley, New York, 1970). J. J. Dacunha, “Transition Matrix and Generalized Matrix Exponential via the Peano-Baker Series,” J. Difference Eqns. Appl. 11, 1245–1264 (2005). B. N. Delone, The St. Petersburg School of Number Theory (Akad. Nauk SSSR, Moscow, 1947; Am. Math. Soc., Providence, RI, 2005). R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary Matrices and Some Applications to Dynamics and Differential Equations (Cambridge Univ. Press, Cambridge, 1938). T. E. Fortmann and K. L. Hitz, An Introduction to Linear Control Systems (M. Dekker, New York, 1977). F. R. Gantmacher, Applications of the Theory of Matrices (Interscience, New York, 1959). N. J. Higham, Functions of Matrices: Theory and Computation (SIAM, Philadelphia, PA, 2008). J. Hoek, “On Campbell-Baker-Hausdorff Formulae and Time-Ordered Exponentials,” Ned. Akad. Wetensch. Proc., Ser. B 84, 47–56 (1981). E. L. Ince, Ordinary Differential Equations, repr. of the 1926 ed. (Dover, New York, 1956). T. Kailath, Linear Systems (Prentice-Hall, Englewood Cliffs, NJ, 1980). W. G. Kelley and A. C. Peterson, The Theory of Differential Equations, 2nd ed. (Springer, New York, 2010). G. Peano, “Intégration par séries des équations différentielles linéaires,” Math. Ann. 32, 450–456 (1888). V. Prepeliţă, M. Doroftei, and T. Vasilache, “Peano-Baker Series Convergence for Matrix Valued Functions of Bounded Variation,” Balkan J. Geom. Appl. 3(1), 111–118 (1998). A. Rindos, S. Woolet, I. Viniotis, and K. Trivedi, “Exact Methods for the Transient Analysis of Nonhomogeneous Continuous Time Markov Chains,” in Computations with Markov Chains: Proc. 2nd Int. Workshop on Numerical Solution of Markov Chains, Raleigh, NC (USA), 1995, Ed. by W. J. Stewart (Kluwer, Boston, MA, 1995), pp. 121–133. U. Schlägel, “Deterministische Rekombinations- und Selektionsdynamik,” Diplomarbeit (Univ. Bielefeld, 2008).