Convergence to Steady States of Solutions of Non-autonomous Heat Equations in $$\mathbb{R}^{N}$$
Tóm tắt
Under certain assumptions on f and g we prove that positive, global and bounded solutions u of the non-autonomous heat equation $$ u_t - \Delta u + f(u) = g(t,x)$$ in $$\mathbb{R}^{N}$$ (N ≥ 3) converge to a steady state.
Tài liệu tham khảo
citation_journal_title=Arch. Rational Mech. Anal.; citation_title=Nonlinear scalar field equations I. Existence of a ground state; citation_author=H. Berestycki, P.L. Lions; citation_volume=82; citation_publication_date=1983; citation_pages=313-346; citation_id=CR1
Brézis H., (1992). Analyse fonctionnelle. Masson, Paris
citation_journal_title=Z. Angew. Math. Phys.; citation_title=On the local structure of ω-limit sets of maps; citation_author=P. Brunovský, P. Poláčik; citation_volume=48; citation_publication_date=1997; citation_pages=976-986; citation_id=CR3
citation_journal_title=Comm. Partial Differential Equations; citation_title=Convergence to equilibrium for semilinear parabolic problems in
; citation_author=J. Busca, M.A. Jendoubi, P. Poláčik; citation_volume=27; citation_publication_date=2002; citation_pages=1793-1814; citation_doi=10.1081/PDE-120016128; citation_id=CR4
citation_journal_title=Comm. Partial Differential Equations; citation_title=Uniqueness of the ground state of solutions of
in
,n ≥ 3; citation_author=C.C. Chen, C.S. Lin; citation_volume=16; citation_publication_date=1991; citation_pages=1549-1572; citation_doi=10.1080/03605309108820811; citation_id=CR5
citation_journal_title=J. Funct. Anal.; citation_title=On the Łojasiewicz-Simon gradient inequality; citation_author=R. Chill; citation_volume=201; citation_publication_date=2003; citation_pages=572-601; citation_doi=10.1016/S0022-1236(02)00102-7; citation_id=CR6
citation_journal_title=Nonlinear Analysis, Ser. A: Theory Methods; citation_title=Convergence to steady states in asymptotically autonomous semilinear evolution equations; citation_author=R. Chill, M.A. Jendoubi; citation_volume=53; citation_publication_date=2003; citation_pages=1017-1039; citation_doi=10.1016/S0362-546X(03)00037-3; citation_id=CR7
citation_journal_title=Comm. Partial Differential Equations; citation_title=The problem of uniqueness of the limit in a semilinear heat equation; citation_author=C. Cortazar, M. del Pino, M. Elgueta; citation_volume=24; citation_publication_date=1999; citation_pages=2147-2172; citation_doi=10.1080/03605309908821497; citation_id=CR8
citation_journal_title=Math. Univ. Carolin.; citation_title=Asymptotic analysis for a nonlinear parabolic equation on
.; citation_author=E. Fašangová; citation_volume=39; citation_publication_date=1998; citation_pages=525-544; citation_id=CR9
citation_journal_title=Proc. Roy. Soc. Edinburgh; citation_title=The long-time behaviour of solutions to parabolic problems on unbounded intervals: the influence of boundary conditions; citation_author=E. Fašangová, E. Feireisl; citation_volume=129A; citation_publication_date=1999; citation_pages=319-329; citation_id=CR10
citation_journal_title=Differential Integral Equations; citation_title=Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations; citation_author=E. Feireisl, H. Petzeltová; citation_volume=10; citation_publication_date=1997; citation_pages=181-196; citation_id=CR11
Haraux, A., and Jendoubi, M. A. (2002). On the convergence of global and bounded solutions of some evolution equations. Prépublication du Laboratoire Jacques-Louis Lions R02003 (2002).
Hille, E., and Phillips, R. S. (1957). Functional analysis and semi-groups. Amer. Math. Soc., Providence, R.I.
citation_journal_title=Nonlinear Anal., Ser. A, Theory Methods; citation_title=Convergence in gradient-like systems which are asymptotically autonomous and analytic; citation_author=S.-Z. Huang, P. Takáč; citation_volume=46; citation_publication_date=2001; citation_pages=675-698; citation_doi=10.1016/S0362-546X(00)00145-0; citation_id=CR14
citation_journal_title=Arch. Rational Mech. Anal.; citation_title=Uniqueness of positive solutions of Δu − u + u
= 0 in
; citation_author=M.K. Kwong; citation_volume=105; citation_publication_date=1989; citation_pages=243-266; citation_doi=10.1007/BF00251502; citation_id=CR15
Lions, P.-L. (1988). On positive solutions of semilinear elliptic equations in unbounded domains, In Ni, W. M., Peletier, L. A., Serrin, J. (eds.), Nonlinear Diffusion Equations and Their Equilibrium States II Math. Sci. Res. Inst. Publ., Vol. 13, Springer Verlag, New York, Berlin, Heidelberg, 85–122.
citation_journal_title=Duke Math. J.; citation_title=Locating the peaks of least energy-solutions to a Neumann problem; citation_author=W.M. Ni, I. Takagi; citation_volume=70; citation_publication_date=1993; citation_pages=247-281; citation_doi=10.1215/S0012-7094-93-07004-4; citation_id=CR17
Simon L. (1996). Theorems on Regularity and Singularity of Energy Minimizing Maps. Lecture Notes in Mathematics ETH Zürich, Birkhäuser Verlag, Basel.