Interpolatory multipoint methods with memory for solving nonlinear equations

Applied Mathematics and Computation - Tập 218 - Trang 2533-2541 - 2011
Miodrag S. Petković1, Jovana Džunić1, Beny Neta2
1Faculty of Electronic Engineering, Department of Mathematics, University of Niš, 18000 Niš, Serbia
2Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA 93943, USA

Tài liệu tham khảo

Bi, 2009, A new family of eight-order iterative methods for solving nonlinear equations, Appl. Math. Comput., 214, 236, 10.1016/j.amc.2009.03.077 Bi, 2009, Three-step iterative methods with eight-order convergence for solving nonlinear equations, J. Comput. Appl. Math., 225, 105, 10.1016/j.cam.2008.07.004 Džunić, 2011, A family of optimal three-point methods for solving nonlinear equations using two parametric functions, Appl. Math. Comput., 217, 7612, 10.1016/j.amc.2011.02.055 Geum, 2010, A multi-parameter family of three-step eighth-order iterative methods locating a simple root, Appl. Math. Comput., 215, 3375, 10.1016/j.amc.2009.10.030 T. Granlund, GNU MP; The GNU Multiple Precision Arithmetic Library, edition 5.0.1, 2010. Herzberger, 1974, Über Matrixdarstellungen für iterationverfahren bei nichtlinearen Gleichungen, Computing, 12, 215, 10.1007/BF02293107 Jarratt, 1966, Some fourth order multipoint methods for solving equations, Math. Comput., 20, 434, 10.1090/S0025-5718-66-99924-8 Jarratt, 1969, Some efficient fourth-order multipoint methods for solving equations, BIT, 9, 119, 10.1007/BF01933248 King, 1971, A fifth order family of modified Newton methods, BIT, 11, 409, 10.1007/BF01939409 King, 1973, A family of fourth order methods for nonlinear equations, SIAM J. Numer. Anal., 10, 876, 10.1137/0710072 Kung, 1974, Optimal order of one-point and multipoint iteration, J. ACM, 21, 643, 10.1145/321850.321860 Liu, 2010, Eighth-order methods with high efficiency index for solving nonlinear equations, Appl. Math. Comput., 215, 3449, 10.1016/j.amc.2009.10.040 Maheshwari, 2009, A fourth-order iterative method for solving nonlinear equations, Appl. Math. Comput., 211, 383, 10.1016/j.amc.2009.01.047 Neta, 1979, A sixth order family of methods for nonlinear equations, Int. J. Comput. Math., 7, 157, 10.1080/00207167908803166 Neta, 1981, On a family of multipoint methods for nonlinear equations, Int. J. Comput. Math., 9, 353, 10.1080/00207168108803257 Neta, 1983, A new family of higher order methods for solving equations, Int. J. Comput. Math., 14, 191, 10.1080/00207168308803384 Neta, 1988, Several new methods for solving equations, Int. J. Comput., 23, 265, 10.1080/00207168808803622 Neta, 2008, High order nonlinear solver, J. Comput. Methods Sci. Eng., 8, 245 Neta, 2010, Construction of optimal order nonlinear solvers using inverse interpolation, Appl. Math. Comput., 217, 2448, 10.1016/j.amc.2010.07.045 Ostrowski, 1960 Petković, 2010, On a general class of multipoint root-finding methods of high computational efficiency, SIAM J. Numer. Anal., 47, 4402, 10.1137/090758763 Petković, 2010, Derivative free two-point methods with and without memory for solving nonlinear equations, Appl. Math. Comput., 217, 1887, 10.1016/j.amc.2010.06.043 M.S. Petković, B. Neta, L.D. Petković, On the Kung-Traub family of multipoint methods with memory, private communication. Petković, 2010, Families of optimal multipoint methods for solving nonlinear equations: a survey, Appl. Anal. Discrete Math., 4, 1, 10.2298/AADM100217015P Petković, 2010, A class of three-point root-solvers of optimal order of convergence, Appl. Math. Comput., 216, 671, 10.1016/j.amc.2010.01.123 Ren, 2009, A class of two-step Steffensen type methods with fourth-order convergence, Appl. Math. Comput., 209, 206, 10.1016/j.amc.2008.12.039 Sharma, 2010, A new family of modified Ostrowskis methods with accelerated eighth order convergence, Numer. Algor., 54, 445, 10.1007/s11075-009-9345-5 Thukral, 2010, Family of three-point methods of optimal order for solving nonlinear equations, J. Comput. Appl. Math., 233, 2278, 10.1016/j.cam.2009.10.012 Traub, 1964 Wang, 2010, New eighth-order iterative methods for solving nonlinear equations, J. Comput. Appl. Math., 234, 1611, 10.1016/j.cam.2010.03.002 Yun, 2008, A non-iterative method for solving non-linear equations, Appl. Math. Comput., 198, 691, 10.1016/j.amc.2007.09.006 Yun, 2009, Iterative methods based on the signum function approach for solving nonlinear equations, Numer. Algor., 52, 649, 10.1007/s11075-009-9305-0