Automatic three-dimensional acoustic-structure interaction analysis using the scaled boundary finite element method
Tài liệu tham khảo
Amini, 1992
Astley, 2000, Infinite elements for wave problems: a review of current formulations and an assessment of accuracy, Int. J. Numer. Methods Eng., 49, 951, 10.1002/1097-0207(20001110)49:7<951::AID-NME989>3.0.CO;2-T
Astley, 2006, The stability of infinite element schemes for transient wave problems, Comput. Methods Appl. Mech. Eng., 195, 3553, 10.1016/j.cma.2005.01.026
Baffet, 2012, Long-time stable high-order absorbing boundary conditions for elastodynamics, Comput. Methods Appl. Mech. Eng., 241, 20, 10.1016/j.cma.2012.05.007
Bartoli, 2005, Modeling guided wave propagation with application to the long-range defect detection in railroad tracks, NDT & E Int., 38, 325, 10.1016/j.ndteint.2004.10.008
Bathe, 1995, A mixed displacement-based finite element formulation for acoustic fluid-structure interaction, Comput. Struct., 56, 225, 10.1016/0045-7949(95)00017-B
Bayliss, 1980, Radiation boundary conditions for wave-like equations, Commun. Pure Appl. Math., 33, 707, 10.1002/cpa.3160330603
Belytschko, 1980, Fluid-structure interaction, Comput. Struct., 12, 459, 10.1016/0045-7949(80)90121-2
Berenger, 1994, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185, 10.1006/jcph.1994.1159
Bermúdez, 1994, Finite element computation of the vibration modes of a fluid-solid system, Comput. Methods Appl. Mech. Eng., 119, 355, 10.1016/0045-7825(94)90095-7
Bermúdez, 1999, Finite element computation of three-dimensional elastoacoustic vibrations, J. Sound Vib., 219, 279, 10.1006/jsvi.1998.1873
Birk, 2016, Coupled acoustic response of two-dimensional bounded and unbounded domains using doubly-asymptotic open boundaries, J. Comput. Phys., 310, 252, 10.1016/j.jcp.2015.12.029
Brunner, 2009, A comparison of FE–BE coupling schemes for large-scale problems with fluid–structure interaction, Int. J. Numer. Methods Eng., 77, 664, 10.1002/nme.2412
Chen, 2014, A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method, Int. J. Numer. Methods Eng., 97, 937, 10.1002/nme.4613
Chen, 1990, Vibration analysis of fluid-solid systems using a finite element displacement formulation, Int. J. Numer. Methods Eng., 29, 683, 10.1002/nme.1620290402
Chopra, 1970
Diaz, 2006, A time domain analysis of PML models in acoustics, Comput. Methods Appl. Mech. Eng., 195, 3820, 10.1016/j.cma.2005.02.031
Dreyer, 2006, Effectiveness and robustness of improved infinite elements for exterior acoustics, Comput. Methods Appl. Mech. Eng., 195, 3591, 10.1016/j.cma.2005.01.019
Engquist, 1979, Radiation boundary conditions for acoustic and elastic wave calculations, Commun. Pure Appl. Math., 32, 313, 10.1002/cpa.3160320303
Everstine, 1981, A symmetric potential formulation for fluid-structure interaction, J. Sound Vib., 79, 157, 10.1016/0022-460X(81)90335-7
Fan, 2008, Boundary finite-element method coupling finite-element method for steady-state analyses of dam-reservoir systems, J. Eng. Mech., 134, 133, 10.1061/(ASCE)0733-9399(2008)134:2(133)
Fan, 2005, Dynamic fluid-structure interaction analysis using boundary finite element method–finite element method, J. Appl. Mech., 72, 591, 10.1115/1.1940664
Gao, 2011, Microstructure characteristics and acoustic properties of laser repaired Chinese bronze bells 2300 years ago, J. Alloys Compd., 509, 953, 10.1016/j.jallcom.2010.09.142
Givoli, 1991, Non-reflecting boundary conditions, J. Comput. Phys., 94, 1, 10.1016/0021-9991(91)90135-8
Givoli, 2004, High-order local non-reflecting boundary conditions: a review, Wave Motion, 39, 319, 10.1016/j.wavemoti.2003.12.004
Gravenkamp, 2012, The simulation of lamb waves in a cracked plate using the scaled boundary finite element method, J. Acoust. Soc. Am., 132, 1358, 10.1121/1.4740478
Gravenkamp, 2015, Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method, J. Comput. Phys., 295, 438, 10.1016/j.jcp.2015.04.032
Gravenkamp, 2015, Modeling ultrasonic waves in elastic waveguides of arbitrary cross-section embedded in infinite solid medium, Comput. Struct., 149, 61, 10.1016/j.compstruc.2014.11.007
Hamdi, 1978, A displacement method for the analysis of vibrations of coupled fluid-structure systems, Int. J. Numer. Methods Eng., 13, 139, 10.1002/nme.1620130110
Harari, 2006, Studies of FE/PML for exterior problems of time-harmonic elastic waves, Comput. Methods Appl. Mech. Eng., 195, 3854, 10.1016/j.cma.2005.01.024
Higdon, 1986, Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. Comput., 47, 437
Howe, 1998
Jiang, 2012, Adaptive perfectly matched layer method for multiple scattering problems, Comput. Methods Appl. Mech. Eng., 201, 42, 10.1016/j.cma.2011.09.013
Lehmann, 2006, Scaled boundary finite element method for acoustics, J. Comput. Acoust., 14, 489, 10.1142/S0218396X06003141
Li, 2018, A unified scaled boundary finite element method for transient two-dimensional vibro-acoustic analysis of plate-like structures, Comput. Struct., 202, 105, 10.1016/j.compstruc.2018.03.004
Li, 2006
Liu, 2019, An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domains by scaled boundary finite element method, Int. J. Mech. Sci., 151, 563, 10.1016/j.ijmecsci.2018.12.018
Liu, 2017, Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models, Comput. Methods Appl. Mech. Eng., 313, 106, 10.1016/j.cma.2016.09.038
Marburg, 2008
Mellado, 2001, Efficient solution of fluid-structure vibration problems, Appl. Numer. Math., 36, 389, 10.1016/S0168-9274(00)00015-5
Moser, 1999, Modeling elastic wave propagation in waveguides with the finite element method, NDT & E Int., 32, 225, 10.1016/S0963-8695(98)00045-0
Nitikitpaiboon, 1993, An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction, Comput. Struct., 47, 871, 10.1016/0045-7949(93)90364-J
Olson, 1985, Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential, Comput. Struct., 21, 21, 10.1016/0045-7949(85)90226-3
Peters, 2013, Modal decomposition of exterior acoustic-structure interaction, J. Acoust. Soc. Am., 133, 2668, 10.1121/1.4796114
Peters, 2014, Modal decomposition of exterior acoustic-structure interaction problems with model order reduction, J. Acoust. Soc. Am., 135, 2706, 10.1121/1.4869086
Prempramote, 2011
Prempramote, 2009, High-order doubly asymptotic open boundaries for scalar wave equation, Int. J. Numer. Methods Eng., 79, 340, 10.1002/nme.2562
Rokhlin, 1985, Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 187, 10.1016/0021-9991(85)90002-6
Saputra, 2017, Automatic image-based stress analysis by the scaled boundary finite element method, Int. J. Numer. Methods Eng., 109, 697, 10.1002/nme.5304
Soares, 2012, An optimized BEM–FEM iterative coupling algorithm for acoustic–elastodynamic interaction analyses in the frequency domain, Comput. Struct., 106, 68, 10.1016/j.compstruc.2012.04.010
Song, 2009, The scaled boundary finite element method in structural dynamics, Int. J. Numer. Methods Eng., 77, 1139, 10.1002/nme.2454
Song, 2018
Song, 1995, Consistent infinitesimal finite-element-cell method: out-of-plane motion, J. Eng. Mech., 121, 613, 10.1061/(ASCE)0733-9399(1995)121:5(613)
Song, 1996, Consistent infinitesimal finite-element-cell method: three-dimensional vector wave equation, Int. J. Numer. Methods Eng., 39, 2189, 10.1002/(SICI)1097-0207(19960715)39:13<2189::AID-NME950>3.0.CO;2-P
Song, 1997, The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics, Comput. Methods Appl. Mech. Eng., 147, 329, 10.1016/S0045-7825(97)00021-2
Song, 1999, Body loads in scaled boundary finite-element method, Comput. Methods Appl. Mech. Eng., 180, 117, 10.1016/S0045-7825(99)00052-3
Song, 1999, The scaled boundary finite element method—alias consistent infinitesimal finite element cell method—for diffusion, Int. J. Numer. Methods Eng., 45, 1403, 10.1002/(SICI)1097-0207(19990810)45:10<1403::AID-NME636>3.0.CO;2-E
Song, 2000, The scaled boundary finite-element method—a primer: solution procedures, Comput. Struct., 78, 211, 10.1016/S0045-7949(00)00100-0
van Ophem, 2017, Stable model order reduction for time-domain exterior vibro-acoustic finite element simulations, Comput. Methods Appl. Mech. Eng., 325, 240, 10.1016/j.cma.2017.06.022
Venås, 2018, Isogeometric analysis of acoustic scattering using infinite elements, Comput. Methods Appl. Mech. Eng., 335, 152, 10.1016/j.cma.2018.02.015
Villamizar, 2017, High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions, J. Comput. Phys., 333, 331, 10.1016/j.jcp.2016.12.048
Vu, 2006, Use of higher-order shape functions in the scaled boundary finite element method, Int. J. Numer. Methods Eng., 65, 1714, 10.1002/nme.1517
Wang, 2011, Time-domain analysis of gravity dam–reservoir interaction using high-order doubly asymptotic open boundary, Comput. Struct., 89, 668, 10.1016/j.compstruc.2011.01.014
Westergaard, 1933, Water pressures on dams during earthquakes, Trans. ASCE, 98, 418
Wolf, 2003
Wolf, 1995, Consistent infinitesimal finite-element-cell method: in-plane motion, Comput. Methods Appl. Mech. Eng., 123, 355, 10.1016/0045-7825(95)00781-U
Wolf, 2000, The scaled boundary finite-element method—a primer: derivations, Comput. Struct., 78, 191, 10.1016/S0045-7949(00)00099-7
Wu, 2013, Sound analysis and synthesis of Marquis Yi of Zeng's chime-bell set, vol. 19, 035077, 10.1121/1.4800059
Yu, 2002, Stable boundary element method/finite element method procedure for dynamic fluid–structure interactions, J. Eng. Mech., 128, 909, 10.1061/(ASCE)0733-9399(2002)128:9(909)
Zhao, 2018, Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media, Comput. Methods Appl. Mech. Eng., 334, 111, 10.1016/j.cma.2018.01.018