Automatic three-dimensional acoustic-structure interaction analysis using the scaled boundary finite element method

Journal of Computational Physics - Tập 395 - Trang 432-460 - 2019
Lei Liu1, Junqi Zhang1, Chongmin Song1, Carolin Birk2, Albert A. Saputra1, Wei Gao1
1School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
2Institute of Structural Analysis of Plates and Shells, University of Duisburg-Essen, 45141 Essen, Germany

Tài liệu tham khảo

Amini, 1992 Astley, 2000, Infinite elements for wave problems: a review of current formulations and an assessment of accuracy, Int. J. Numer. Methods Eng., 49, 951, 10.1002/1097-0207(20001110)49:7<951::AID-NME989>3.0.CO;2-T Astley, 2006, The stability of infinite element schemes for transient wave problems, Comput. Methods Appl. Mech. Eng., 195, 3553, 10.1016/j.cma.2005.01.026 Baffet, 2012, Long-time stable high-order absorbing boundary conditions for elastodynamics, Comput. Methods Appl. Mech. Eng., 241, 20, 10.1016/j.cma.2012.05.007 Bartoli, 2005, Modeling guided wave propagation with application to the long-range defect detection in railroad tracks, NDT & E Int., 38, 325, 10.1016/j.ndteint.2004.10.008 Bathe, 1995, A mixed displacement-based finite element formulation for acoustic fluid-structure interaction, Comput. Struct., 56, 225, 10.1016/0045-7949(95)00017-B Bayliss, 1980, Radiation boundary conditions for wave-like equations, Commun. Pure Appl. Math., 33, 707, 10.1002/cpa.3160330603 Belytschko, 1980, Fluid-structure interaction, Comput. Struct., 12, 459, 10.1016/0045-7949(80)90121-2 Berenger, 1994, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185, 10.1006/jcph.1994.1159 Bermúdez, 1994, Finite element computation of the vibration modes of a fluid-solid system, Comput. Methods Appl. Mech. Eng., 119, 355, 10.1016/0045-7825(94)90095-7 Bermúdez, 1999, Finite element computation of three-dimensional elastoacoustic vibrations, J. Sound Vib., 219, 279, 10.1006/jsvi.1998.1873 Birk, 2016, Coupled acoustic response of two-dimensional bounded and unbounded domains using doubly-asymptotic open boundaries, J. Comput. Phys., 310, 252, 10.1016/j.jcp.2015.12.029 Brunner, 2009, A comparison of FE–BE coupling schemes for large-scale problems with fluid–structure interaction, Int. J. Numer. Methods Eng., 77, 664, 10.1002/nme.2412 Chen, 2014, A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method, Int. J. Numer. Methods Eng., 97, 937, 10.1002/nme.4613 Chen, 1990, Vibration analysis of fluid-solid systems using a finite element displacement formulation, Int. J. Numer. Methods Eng., 29, 683, 10.1002/nme.1620290402 Chopra, 1970 Diaz, 2006, A time domain analysis of PML models in acoustics, Comput. Methods Appl. Mech. Eng., 195, 3820, 10.1016/j.cma.2005.02.031 Dreyer, 2006, Effectiveness and robustness of improved infinite elements for exterior acoustics, Comput. Methods Appl. Mech. Eng., 195, 3591, 10.1016/j.cma.2005.01.019 Engquist, 1979, Radiation boundary conditions for acoustic and elastic wave calculations, Commun. Pure Appl. Math., 32, 313, 10.1002/cpa.3160320303 Everstine, 1981, A symmetric potential formulation for fluid-structure interaction, J. Sound Vib., 79, 157, 10.1016/0022-460X(81)90335-7 Fan, 2008, Boundary finite-element method coupling finite-element method for steady-state analyses of dam-reservoir systems, J. Eng. Mech., 134, 133, 10.1061/(ASCE)0733-9399(2008)134:2(133) Fan, 2005, Dynamic fluid-structure interaction analysis using boundary finite element method–finite element method, J. Appl. Mech., 72, 591, 10.1115/1.1940664 Gao, 2011, Microstructure characteristics and acoustic properties of laser repaired Chinese bronze bells 2300 years ago, J. Alloys Compd., 509, 953, 10.1016/j.jallcom.2010.09.142 Givoli, 1991, Non-reflecting boundary conditions, J. Comput. Phys., 94, 1, 10.1016/0021-9991(91)90135-8 Givoli, 2004, High-order local non-reflecting boundary conditions: a review, Wave Motion, 39, 319, 10.1016/j.wavemoti.2003.12.004 Gravenkamp, 2012, The simulation of lamb waves in a cracked plate using the scaled boundary finite element method, J. Acoust. Soc. Am., 132, 1358, 10.1121/1.4740478 Gravenkamp, 2015, Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method, J. Comput. Phys., 295, 438, 10.1016/j.jcp.2015.04.032 Gravenkamp, 2015, Modeling ultrasonic waves in elastic waveguides of arbitrary cross-section embedded in infinite solid medium, Comput. Struct., 149, 61, 10.1016/j.compstruc.2014.11.007 Hamdi, 1978, A displacement method for the analysis of vibrations of coupled fluid-structure systems, Int. J. Numer. Methods Eng., 13, 139, 10.1002/nme.1620130110 Harari, 2006, Studies of FE/PML for exterior problems of time-harmonic elastic waves, Comput. Methods Appl. Mech. Eng., 195, 3854, 10.1016/j.cma.2005.01.024 Higdon, 1986, Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. Comput., 47, 437 Howe, 1998 Jiang, 2012, Adaptive perfectly matched layer method for multiple scattering problems, Comput. Methods Appl. Mech. Eng., 201, 42, 10.1016/j.cma.2011.09.013 Lehmann, 2006, Scaled boundary finite element method for acoustics, J. Comput. Acoust., 14, 489, 10.1142/S0218396X06003141 Li, 2018, A unified scaled boundary finite element method for transient two-dimensional vibro-acoustic analysis of plate-like structures, Comput. Struct., 202, 105, 10.1016/j.compstruc.2018.03.004 Li, 2006 Liu, 2019, An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domains by scaled boundary finite element method, Int. J. Mech. Sci., 151, 563, 10.1016/j.ijmecsci.2018.12.018 Liu, 2017, Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models, Comput. Methods Appl. Mech. Eng., 313, 106, 10.1016/j.cma.2016.09.038 Marburg, 2008 Mellado, 2001, Efficient solution of fluid-structure vibration problems, Appl. Numer. Math., 36, 389, 10.1016/S0168-9274(00)00015-5 Moser, 1999, Modeling elastic wave propagation in waveguides with the finite element method, NDT & E Int., 32, 225, 10.1016/S0963-8695(98)00045-0 Nitikitpaiboon, 1993, An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction, Comput. Struct., 47, 871, 10.1016/0045-7949(93)90364-J Olson, 1985, Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential, Comput. Struct., 21, 21, 10.1016/0045-7949(85)90226-3 Peters, 2013, Modal decomposition of exterior acoustic-structure interaction, J. Acoust. Soc. Am., 133, 2668, 10.1121/1.4796114 Peters, 2014, Modal decomposition of exterior acoustic-structure interaction problems with model order reduction, J. Acoust. Soc. Am., 135, 2706, 10.1121/1.4869086 Prempramote, 2011 Prempramote, 2009, High-order doubly asymptotic open boundaries for scalar wave equation, Int. J. Numer. Methods Eng., 79, 340, 10.1002/nme.2562 Rokhlin, 1985, Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 187, 10.1016/0021-9991(85)90002-6 Saputra, 2017, Automatic image-based stress analysis by the scaled boundary finite element method, Int. J. Numer. Methods Eng., 109, 697, 10.1002/nme.5304 Soares, 2012, An optimized BEM–FEM iterative coupling algorithm for acoustic–elastodynamic interaction analyses in the frequency domain, Comput. Struct., 106, 68, 10.1016/j.compstruc.2012.04.010 Song, 2009, The scaled boundary finite element method in structural dynamics, Int. J. Numer. Methods Eng., 77, 1139, 10.1002/nme.2454 Song, 2018 Song, 1995, Consistent infinitesimal finite-element-cell method: out-of-plane motion, J. Eng. Mech., 121, 613, 10.1061/(ASCE)0733-9399(1995)121:5(613) Song, 1996, Consistent infinitesimal finite-element-cell method: three-dimensional vector wave equation, Int. J. Numer. Methods Eng., 39, 2189, 10.1002/(SICI)1097-0207(19960715)39:13<2189::AID-NME950>3.0.CO;2-P Song, 1997, The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics, Comput. Methods Appl. Mech. Eng., 147, 329, 10.1016/S0045-7825(97)00021-2 Song, 1999, Body loads in scaled boundary finite-element method, Comput. Methods Appl. Mech. Eng., 180, 117, 10.1016/S0045-7825(99)00052-3 Song, 1999, The scaled boundary finite element method—alias consistent infinitesimal finite element cell method—for diffusion, Int. J. Numer. Methods Eng., 45, 1403, 10.1002/(SICI)1097-0207(19990810)45:10<1403::AID-NME636>3.0.CO;2-E Song, 2000, The scaled boundary finite-element method—a primer: solution procedures, Comput. Struct., 78, 211, 10.1016/S0045-7949(00)00100-0 van Ophem, 2017, Stable model order reduction for time-domain exterior vibro-acoustic finite element simulations, Comput. Methods Appl. Mech. Eng., 325, 240, 10.1016/j.cma.2017.06.022 Venås, 2018, Isogeometric analysis of acoustic scattering using infinite elements, Comput. Methods Appl. Mech. Eng., 335, 152, 10.1016/j.cma.2018.02.015 Villamizar, 2017, High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions, J. Comput. Phys., 333, 331, 10.1016/j.jcp.2016.12.048 Vu, 2006, Use of higher-order shape functions in the scaled boundary finite element method, Int. J. Numer. Methods Eng., 65, 1714, 10.1002/nme.1517 Wang, 2011, Time-domain analysis of gravity dam–reservoir interaction using high-order doubly asymptotic open boundary, Comput. Struct., 89, 668, 10.1016/j.compstruc.2011.01.014 Westergaard, 1933, Water pressures on dams during earthquakes, Trans. ASCE, 98, 418 Wolf, 2003 Wolf, 1995, Consistent infinitesimal finite-element-cell method: in-plane motion, Comput. Methods Appl. Mech. Eng., 123, 355, 10.1016/0045-7825(95)00781-U Wolf, 2000, The scaled boundary finite-element method—a primer: derivations, Comput. Struct., 78, 191, 10.1016/S0045-7949(00)00099-7 Wu, 2013, Sound analysis and synthesis of Marquis Yi of Zeng's chime-bell set, vol. 19, 035077, 10.1121/1.4800059 Yu, 2002, Stable boundary element method/finite element method procedure for dynamic fluid–structure interactions, J. Eng. Mech., 128, 909, 10.1061/(ASCE)0733-9399(2002)128:9(909) Zhao, 2018, Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media, Comput. Methods Appl. Mech. Eng., 334, 111, 10.1016/j.cma.2018.01.018