Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation
Tài liệu tham khảo
Sharafi, 2014, Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach, Renew. Energy, 68, 67, 10.1016/j.renene.2014.01.011
Nhuchhen, 2012, Estimation of higher heating value of biomass from proximate analysis: a new approach,, Fuel, 99, 55, 10.1016/j.fuel.2012.04.015
Angulo, 2001, Emisiones en la Combustión de Biomasa y el Medio Ambiente, Energía: Ingeniería energética y medioambiental, 27, 75
Muthuraman, 2010, A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste, Bioresour. Technol., 101, 2477, 10.1016/j.biortech.2009.11.060
Stassen, 1994, Biogas and biomass technology: energy generation from biomass and waste in The Netherlands, Renew. Energy, 5, 819, 10.1016/0960-1481(94)90096-5
Knoef, 1995, Energy generation from biomass and waste in The Netherlands: a brief overview and perspective, Renew. Energy, 6, 329, 10.1016/0960-1481(95)00012-9
Toklu, 2017, Biomass energy potential and utilization in Turkey, Renew. Energy, 107, 235, 10.1016/j.renene.2017.02.008
Spinelli, 2010, Industrial harvesting of olive tree pruning residue for energy biomass, Bioresour. Technol., 101, 730, 10.1016/j.biortech.2009.08.039
Aghbashlo, 2016, Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine, Renew. Energy, 93, 353, 10.1016/j.renene.2016.02.077
Aghbashlo, 2017, Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor, Energy, 132, 65, 10.1016/j.energy.2017.05.041
Majumder, 2008, Development of a new proximate analysis based correlation to predict calorific value of coal, Fuel, 87, 3077, 10.1016/j.fuel.2008.04.008
Thipkhunthod, 2005, Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses, Fuel, 84, 849, 10.1016/j.fuel.2005.01.003
2010
Zhou, 2014, An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value, Renew. Sustain. Energy Rev., 36, 107, 10.1016/j.rser.2014.04.024
Channiwala, 2002, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel, 81, 1051, 10.1016/S0016-2361(01)00131-4
Callejón-Ferre, 2014, Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain), Fuel, 116, 377, 10.1016/j.fuel.2013.08.023
Sadrameli, 2008, Prediction of higher heating values for saturated fatty acids from their physical properties, Fuel, 87, 1776, 10.1016/j.fuel.2007.10.020
Demirbas, 2006, Theoretical heating values and impacts of pure compounds and fuels, Energy Sources, Part A, 28, 459, 10.1080/009083190927129
Vargas-Moreno, 2012, A review of the mathematical models for predicting the heating value of biomass materials,, Renew. Sustain. Energy Rev., 16, 3065, 10.1016/j.rser.2012.02.054
Lyons, 1985, A procedure for estimating the value of forest fuels, Biomass, 8, 283, 10.1016/0144-4565(85)90061-7
Basu, 2010
Dashti, 2019, Estimation of biomass higher heating value (HHV) based on the proximate analysis: smart modeling and correlation, Fuel, 257, 10.1016/j.fuel.2019.115931
Yin, 2011, Prediction of higher heating values of biomass from proximate and ultimate analyses, Fuel, 90, 1128, 10.1016/j.fuel.2010.11.031
Nhuchhen, 2017, HHV predicting correlations for torrefied biomass using proximate and ultimate analyses, Bioengineering, 4, 7, 10.3390/bioengineering4010007
Hosseinpour, 2017, Estimation of biomass higher heating value (HHV) based on the proximate analysis by using iterative neural network-adapted partial least squares (INNPLS), Energy, 138, 473, 10.1016/j.energy.2017.07.075
Keybondorian, 2017, Estimation of the higher heating value of biomass using proximate analysis, Energy Sourc. A, 39, 2025, 10.1080/15567036.2017.1400609
Ghugare, 2014, Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms, BioEnergy Res., 7, 681, 10.1007/s12155-013-9393-5
Akkaya, 2016, ANFIS based prediction model for biomass heating value using proximate analysis components, Fuel, 180, 687, 10.1016/j.fuel.2016.04.112
Uzun, 2017, Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis, Bioresour. Technol., 234, 122, 10.1016/j.biortech.2017.03.015
Estiati, 2016, Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass, Fuel, 180, 377, 10.1016/j.fuel.2016.04.051
Rostami, 2016, Effective thermal conductivity modeling of sandstones: SVM framework analysis, Int. J. Thermophys., 37, 59, 10.1007/s10765-016-2057-x
Samui, 2011, Utilization of a least square support vector machine (LSSVM) for slope stability analysis, Sci. Iran., 18, 53, 10.1016/j.scient.2011.03.007
Suykens, 1999, Least squares support vector machine classifiers, Neural Process. Lett., 9, 293, 10.1023/A:1018628609742
Yarveicy, 2014, Practical use of statistical learning theory for modeling freezing point depression of electrolyte solutions: LSSVM model, J. Nat. Gas Sci. Eng., 20, 414, 10.1016/j.jngse.2014.06.020
Ding, 2011, 165
Ekici, 2014, A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems, Measurement, 50, 255, 10.1016/j.measurement.2014.01.010
Mesbah, 2015, Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm, J. Supercrit. Fluids, 97, 256, 10.1016/j.supflu.2014.12.011
Safari, 2014, Prediction of the aqueous solubility of BaSO4 using pitzer ion interaction model and LSSVM algorithm, Fluid Phase Equil., 374, 48, 10.1016/j.fluid.2014.04.010
Ekici, 2014, A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems, Measurement, 50, 255, 10.1016/j.measurement.2014.01.010
Mesbah, 2015, Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm, J. Supercrit. Fluids, 97, 256, 10.1016/j.supflu.2014.12.011
Rostami, 2017, Fast estimation of supercritical CO2 thermal conductivity by a supervised learning machine: Implications for EOR, 79th EAGE conference and exhibition 2017, Eur. Assoc. Geoscientists Eng., 1
Fabian, 1997, Simulated annealing simulated, Comput. Math. Appl., 33, 81, 10.1016/S0898-1221(96)00221-0
Jang, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. on Syst., man, and Cybern, 23, 665, 10.1109/21.256541
Zadeh, 1965, Fuzzy sets, Inf. Contr., 8, 338, 10.1016/S0019-9958(65)90241-X
Hilberg, 1969, From approximations to exact relations for characteristic impedances, IEEE Trans. Microw. Theor. Tech., 17, 259, 10.1109/TMTT.1969.1126946
Sha, 2007, The use of artificial neural networks in materials science based research, Mater. Des., 28, 1747, 10.1016/j.matdes.2007.02.009
Wang, 2003, 81
Rezakazemi, 2013, Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling, Int. J. Hydrogen Energy, 38, 14035, 10.1016/j.ijhydene.2013.08.062
Broomhead, 1988
Panda, 2008, Flank wear prediction in drilling using back propagation neural network and radial basis function network, Appl, soft Comput., 8, 858, 10.1016/j.asoc.2007.07.003
Turnbull, 2005, Fast recognition of musical genres using RBF networks, IEEE Trans. Knowl. Data Eng., 17, 580, 10.1109/TKDE.2005.62
Singh, 2012, Linear and nonlinear modeling approaches for urban air quality prediction, Sci. Total Environ., 426, 244, 10.1016/j.scitotenv.2012.03.076
Noushabadi, 2020, Estimation of cetane numbers of biodiesel and diesel oils using regression and PSO-ANFIS models, Renew. Energy, 158, 465, 10.1016/j.renene.2020.04.146
Dashti, 2020, Estimation of CO2 adsorption in high capacity metal− organic frameworks: applications to greenhouse gas control, J. CO2 Util., 41, 101256, 10.1016/j.jcou.2020.101256
Qian, 2016, A simple prediction model for higher heat value of biomass, J. Chem. Eng. Data, 61, 4039, 10.1021/acs.jced.6b00537
Duan, 2018, Application of lssvm algorithm for estimating higher heating value of biomass based on ultimate analysis, Energy Sources, Part A: Recovery, Util., Environ. Eff., 40, 709, 10.1080/15567036.2018.1454552
Boumanchar, 2019, F.E.M.h. Alaoui, A. Sahibed-Dine, F. Bentiss, C. Jama, M. Bensitel, Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming, Biomass Convers. Biorefin., 9, 499, 10.1007/s13399-019-00386-5
Han, 2017, A method for estimating higher heating value of biomass-plastic fuel,, J. Energy Inst., 90, 331, 10.1016/j.joei.2016.01.001
Ganjidoost, 2015, Adaptive network-based fuzzy inference systems coupled with genetic algorithms for predicting soil permeability coefficient, Neural Process. Lett., 1
Ghasemi, 2016, A new hybrid ANFIS–PSO model for prediction of peak particle velocity due to bench blasting, Eng. Comput., 1
Hasanipanah, 2016, Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting, Neural Comput. Appl., 1
Tatar, 2016, Comparison of two soft computing approaches for predicting CO 2 solubility in aqueous solution of piperazine, Int. J. Greenhouse Gas Contr., 53, 85, 10.1016/j.ijggc.2016.07.037
Ghiasi, 2016, Application of ANFIS soft computing technique in modeling the CO 2 capture with MEA, DEA, and TEA aqueous solutions, Int. J. Greenhouse Gas Contr., 49, 47, 10.1016/j.ijggc.2016.02.015
Tatar, 2016, Prediction of carbon dioxide solubility in aqueous mixture of methyldiethanolamine and N-methylpyrrolidone using intelligent models, Int. J. Greenhouse Gas Contr., 47, 122, 10.1016/j.ijggc.2016.01.048
Boumanchar, 2019, F.E.M.h. Alaoui, A. Sahibed-dine, F. Bentiss, C. Jama, M. Bensitel, Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming, Biomass Convers. Biorefin., 1
Callejón-Ferre, 2011, Greenhouse crop residues: energy potential and models for the prediction of their higher heating value, Renew. Sustain. Energy Rev., 15, 948, 10.1016/j.rser.2010.11.012
Choi, 2014, Prediction of livestock manure and mixture higher heating value based on fundamental analysis, Fuel, 116, 772, 10.1016/j.fuel.2013.08.064
García, 2014, Spanish biofuels heating value estimation. Part I: ultimate analysis data, Fuel, 117, 1130, 10.1016/j.fuel.2013.08.048
Sheng, 2005, Estimating the higher heating value of biomass fuels from basic analysis data, Biomass Bioenergy, 28, 499, 10.1016/j.biombioe.2004.11.008
Friedl, 2005, Prediction of heating values of biomass fuel from elemental composition, Anal. Chim. Acta, 544, 191, 10.1016/j.aca.2005.01.041
Callejón-Ferre, 2011, Erratum to: greenhouse crop residues: energy potential and models for the prediction of their higher heating value, Renew. Sust. Energy Rev., 15, 948, 10.1016/j.rser.2010.11.012
Bychkov, 2017, Prediction of higher heating values of plant biomass from ultimate analysis data, JTAC, 130, 1399
Jenkins, 1985, Correlation OF physical and chemical properties of terrestrial biomass with conversion, 371
Tillman, 1978, vol. 252p
Jain, 1981, New method of calculating calorific values from elemental compositions of fossil fuels, Fuel, 60, 1079, 10.1016/0016-2361(81)90052-1
Kathiravale, 2003, Modeling the heating value of municipal solid Waste☆, Fuel, 82, 1119, 10.1016/S0016-2361(03)00009-7
Mason, 1980
Demirbaş, 1997, Calculation of higher heating values of biomass fuels, Fuel, 76, 431, 10.1016/S0016-2361(97)85520-2
Demirbas, 1997, Estimation of calorific values of fuels from lignocellulosics, Energy Sourc., 19, 765, 10.1080/00908319708908888
Demirbas, 2004, Combustion characteristics of different biomass fuels, Progr. Energy Combust. Sci., 30, 219, 10.1016/j.pecs.2003.10.004
Abu-Qudais, 2000, Energy content of municipal solid waste in Jordan and its potential utilization, Energy Convers. Manag., 41, 983, 10.1016/S0196-8904(99)00155-7
Callejón-Ferre, 2011, Greenhouse crop residues: energy potential and models for the prediction of their higher heating value, Renew. Sustain. Energy Rev., 15, 948, 10.1016/j.rser.2010.11.012
Cho, 1995, Estimation of the heating value of oily mill sludges from steel plant, Fuel, 74, 1918, 10.1016/0016-2361(95)80029-H
Zanzi, 2002, Rapid pyrolysis of agricultural residues at high temperature, Biomass Bioenergy, 23, 357, 10.1016/S0961-9534(02)00061-2
Khan, 1991, New approach for estimating energy content of municipal solid waste, J. Environ. Eng., 117, 376, 10.1061/(ASCE)0733-9372(1991)117:3(376)
Cordero, 2001, Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis, Fuel, 80, 1567, 10.1016/S0016-2361(01)00034-5
Meraz, 2003, A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition☆, Fuel, 82, 1499, 10.1016/S0016-2361(03)00075-9
Batra, 2008, Characterization of unburned carbon in bagasse fly ash, Fuel, 87, 2972, 10.1016/j.fuel.2008.04.010
Mott, 1940, The calorific value of carbon in coal: the Dulong relationship, Fuel, 19, 242
Selvig Wa, 1945, Calorific value of coal
Hosseinzadeh, 2014, Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids, J. Mol. Liq., 200, 340, 10.1016/j.molliq.2014.10.033
Chen, 2014, The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process, Fuel, 126, 202, 10.1016/j.fuel.2014.02.034
Hemmat-Sarapardeh, 2020
Goodall, 1993
Gramatica, 2007, Principles of QSAR models validation: internal and external, QSAR Comb. Sci., 26, 694, 10.1002/qsar.200610151
Hemmati-Sarapardeh, 2016, On the evaluation of asphaltene precipitation titration data: modeling and data assessment, Fluid Phase Equil., 415, 88, 10.1016/j.fluid.2016.01.031
Leroy, 1987
Mohammadi, 2012, A novel method for evaluation of asphaltene precipitation titration data, Chem. Eng. Sci., 78, 181, 10.1016/j.ces.2012.05.009
Jenkins, 1998, Combustion properties of biomass, Fuel Process, 10.1016/S0378-3820(97)00059-3
Phyllis, 2012
Hofbauer, 2012
Grover, 2002
Domalski, 1986
Rose, 1977, Technical Data on Fuel
IEA Bioenergy Task 32, 2013
Johnson Ja, 1951
WR, 1995
Suarez, 2000, Thermochemical properties of Cuban biomass, Energy Sourc., 22, 851, 10.1080/00908310051128156
García, 2012, Characterization of Spanish biomass wastes for energy use, Bioresour. Technol., 103, 249, 10.1016/j.biortech.2011.10.004
A, 1984
Parikh, 2005, A correlation for calculating HHV from proximate analysis of solid fuels, Fuel, 84, 487, 10.1016/j.fuel.2004.10.010
Miranda, 2009, Energetic characterization of densified residues from Pyrenean oak forest, Fuel, 88, 2106, 10.1016/j.fuel.2009.05.015