Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation

Renewable Energy - Tập 179 - Trang 550-562 - 2021
Abolfazl Sajadi Noushabadi1, Amir Dashti2, Farhad Ahmadijokani3, Jinguang Hu4, Amir H. Mohammadi5,6
1Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
2Young and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
4Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, T2N 4H9, Canada
5Institut de Recherche en Génie Chimique et Pétrolier (IRGCP), Paris Cedex, France
6Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa

Tài liệu tham khảo

Sharafi, 2014, Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach, Renew. Energy, 68, 67, 10.1016/j.renene.2014.01.011 Nhuchhen, 2012, Estimation of higher heating value of biomass from proximate analysis: a new approach,, Fuel, 99, 55, 10.1016/j.fuel.2012.04.015 Angulo, 2001, Emisiones en la Combustión de Biomasa y el Medio Ambiente, Energía: Ingeniería energética y medioambiental, 27, 75 Muthuraman, 2010, A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste, Bioresour. Technol., 101, 2477, 10.1016/j.biortech.2009.11.060 Stassen, 1994, Biogas and biomass technology: energy generation from biomass and waste in The Netherlands, Renew. Energy, 5, 819, 10.1016/0960-1481(94)90096-5 Knoef, 1995, Energy generation from biomass and waste in The Netherlands: a brief overview and perspective, Renew. Energy, 6, 329, 10.1016/0960-1481(95)00012-9 Toklu, 2017, Biomass energy potential and utilization in Turkey, Renew. Energy, 107, 235, 10.1016/j.renene.2017.02.008 Spinelli, 2010, Industrial harvesting of olive tree pruning residue for energy biomass, Bioresour. Technol., 101, 730, 10.1016/j.biortech.2009.08.039 Aghbashlo, 2016, Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine, Renew. Energy, 93, 353, 10.1016/j.renene.2016.02.077 Aghbashlo, 2017, Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor, Energy, 132, 65, 10.1016/j.energy.2017.05.041 Majumder, 2008, Development of a new proximate analysis based correlation to predict calorific value of coal, Fuel, 87, 3077, 10.1016/j.fuel.2008.04.008 Thipkhunthod, 2005, Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses, Fuel, 84, 849, 10.1016/j.fuel.2005.01.003 2010 Zhou, 2014, An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value, Renew. Sustain. Energy Rev., 36, 107, 10.1016/j.rser.2014.04.024 Channiwala, 2002, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel, 81, 1051, 10.1016/S0016-2361(01)00131-4 Callejón-Ferre, 2014, Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain), Fuel, 116, 377, 10.1016/j.fuel.2013.08.023 Sadrameli, 2008, Prediction of higher heating values for saturated fatty acids from their physical properties, Fuel, 87, 1776, 10.1016/j.fuel.2007.10.020 Demirbas, 2006, Theoretical heating values and impacts of pure compounds and fuels, Energy Sources, Part A, 28, 459, 10.1080/009083190927129 Vargas-Moreno, 2012, A review of the mathematical models for predicting the heating value of biomass materials,, Renew. Sustain. Energy Rev., 16, 3065, 10.1016/j.rser.2012.02.054 Lyons, 1985, A procedure for estimating the value of forest fuels, Biomass, 8, 283, 10.1016/0144-4565(85)90061-7 Basu, 2010 Dashti, 2019, Estimation of biomass higher heating value (HHV) based on the proximate analysis: smart modeling and correlation, Fuel, 257, 10.1016/j.fuel.2019.115931 Yin, 2011, Prediction of higher heating values of biomass from proximate and ultimate analyses, Fuel, 90, 1128, 10.1016/j.fuel.2010.11.031 Nhuchhen, 2017, HHV predicting correlations for torrefied biomass using proximate and ultimate analyses, Bioengineering, 4, 7, 10.3390/bioengineering4010007 Hosseinpour, 2017, Estimation of biomass higher heating value (HHV) based on the proximate analysis by using iterative neural network-adapted partial least squares (INNPLS), Energy, 138, 473, 10.1016/j.energy.2017.07.075 Keybondorian, 2017, Estimation of the higher heating value of biomass using proximate analysis, Energy Sourc. A, 39, 2025, 10.1080/15567036.2017.1400609 Ghugare, 2014, Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms, BioEnergy Res., 7, 681, 10.1007/s12155-013-9393-5 Akkaya, 2016, ANFIS based prediction model for biomass heating value using proximate analysis components, Fuel, 180, 687, 10.1016/j.fuel.2016.04.112 Uzun, 2017, Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis, Bioresour. Technol., 234, 122, 10.1016/j.biortech.2017.03.015 Estiati, 2016, Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass, Fuel, 180, 377, 10.1016/j.fuel.2016.04.051 Rostami, 2016, Effective thermal conductivity modeling of sandstones: SVM framework analysis, Int. J. Thermophys., 37, 59, 10.1007/s10765-016-2057-x Samui, 2011, Utilization of a least square support vector machine (LSSVM) for slope stability analysis, Sci. Iran., 18, 53, 10.1016/j.scient.2011.03.007 Suykens, 1999, Least squares support vector machine classifiers, Neural Process. Lett., 9, 293, 10.1023/A:1018628609742 Yarveicy, 2014, Practical use of statistical learning theory for modeling freezing point depression of electrolyte solutions: LSSVM model, J. Nat. Gas Sci. Eng., 20, 414, 10.1016/j.jngse.2014.06.020 Ding, 2011, 165 Ekici, 2014, A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems, Measurement, 50, 255, 10.1016/j.measurement.2014.01.010 Mesbah, 2015, Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm, J. Supercrit. Fluids, 97, 256, 10.1016/j.supflu.2014.12.011 Safari, 2014, Prediction of the aqueous solubility of BaSO4 using pitzer ion interaction model and LSSVM algorithm, Fluid Phase Equil., 374, 48, 10.1016/j.fluid.2014.04.010 Ekici, 2014, A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems, Measurement, 50, 255, 10.1016/j.measurement.2014.01.010 Mesbah, 2015, Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm, J. Supercrit. Fluids, 97, 256, 10.1016/j.supflu.2014.12.011 Rostami, 2017, Fast estimation of supercritical CO2 thermal conductivity by a supervised learning machine: Implications for EOR, 79th EAGE conference and exhibition 2017, Eur. Assoc. Geoscientists Eng., 1 Fabian, 1997, Simulated annealing simulated, Comput. Math. Appl., 33, 81, 10.1016/S0898-1221(96)00221-0 Jang, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. on Syst., man, and Cybern, 23, 665, 10.1109/21.256541 Zadeh, 1965, Fuzzy sets, Inf. Contr., 8, 338, 10.1016/S0019-9958(65)90241-X Hilberg, 1969, From approximations to exact relations for characteristic impedances, IEEE Trans. Microw. Theor. Tech., 17, 259, 10.1109/TMTT.1969.1126946 Sha, 2007, The use of artificial neural networks in materials science based research, Mater. Des., 28, 1747, 10.1016/j.matdes.2007.02.009 Wang, 2003, 81 Rezakazemi, 2013, Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling, Int. J. Hydrogen Energy, 38, 14035, 10.1016/j.ijhydene.2013.08.062 Broomhead, 1988 Panda, 2008, Flank wear prediction in drilling using back propagation neural network and radial basis function network, Appl, soft Comput., 8, 858, 10.1016/j.asoc.2007.07.003 Turnbull, 2005, Fast recognition of musical genres using RBF networks, IEEE Trans. Knowl. Data Eng., 17, 580, 10.1109/TKDE.2005.62 Singh, 2012, Linear and nonlinear modeling approaches for urban air quality prediction, Sci. Total Environ., 426, 244, 10.1016/j.scitotenv.2012.03.076 Noushabadi, 2020, Estimation of cetane numbers of biodiesel and diesel oils using regression and PSO-ANFIS models, Renew. Energy, 158, 465, 10.1016/j.renene.2020.04.146 Dashti, 2020, Estimation of CO2 adsorption in high capacity metal− organic frameworks: applications to greenhouse gas control, J. CO2 Util., 41, 101256, 10.1016/j.jcou.2020.101256 Qian, 2016, A simple prediction model for higher heat value of biomass, J. Chem. Eng. Data, 61, 4039, 10.1021/acs.jced.6b00537 Duan, 2018, Application of lssvm algorithm for estimating higher heating value of biomass based on ultimate analysis, Energy Sources, Part A: Recovery, Util., Environ. Eff., 40, 709, 10.1080/15567036.2018.1454552 Boumanchar, 2019, F.E.M.h. Alaoui, A. Sahibed-Dine, F. Bentiss, C. Jama, M. Bensitel, Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming, Biomass Convers. Biorefin., 9, 499, 10.1007/s13399-019-00386-5 Han, 2017, A method for estimating higher heating value of biomass-plastic fuel,, J. Energy Inst., 90, 331, 10.1016/j.joei.2016.01.001 Ganjidoost, 2015, Adaptive network-based fuzzy inference systems coupled with genetic algorithms for predicting soil permeability coefficient, Neural Process. Lett., 1 Ghasemi, 2016, A new hybrid ANFIS–PSO model for prediction of peak particle velocity due to bench blasting, Eng. Comput., 1 Hasanipanah, 2016, Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting, Neural Comput. Appl., 1 Tatar, 2016, Comparison of two soft computing approaches for predicting CO 2 solubility in aqueous solution of piperazine, Int. J. Greenhouse Gas Contr., 53, 85, 10.1016/j.ijggc.2016.07.037 Ghiasi, 2016, Application of ANFIS soft computing technique in modeling the CO 2 capture with MEA, DEA, and TEA aqueous solutions, Int. J. Greenhouse Gas Contr., 49, 47, 10.1016/j.ijggc.2016.02.015 Tatar, 2016, Prediction of carbon dioxide solubility in aqueous mixture of methyldiethanolamine and N-methylpyrrolidone using intelligent models, Int. J. Greenhouse Gas Contr., 47, 122, 10.1016/j.ijggc.2016.01.048 Boumanchar, 2019, F.E.M.h. Alaoui, A. Sahibed-dine, F. Bentiss, C. Jama, M. Bensitel, Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming, Biomass Convers. Biorefin., 1 Callejón-Ferre, 2011, Greenhouse crop residues: energy potential and models for the prediction of their higher heating value, Renew. Sustain. Energy Rev., 15, 948, 10.1016/j.rser.2010.11.012 Choi, 2014, Prediction of livestock manure and mixture higher heating value based on fundamental analysis, Fuel, 116, 772, 10.1016/j.fuel.2013.08.064 García, 2014, Spanish biofuels heating value estimation. Part I: ultimate analysis data, Fuel, 117, 1130, 10.1016/j.fuel.2013.08.048 Sheng, 2005, Estimating the higher heating value of biomass fuels from basic analysis data, Biomass Bioenergy, 28, 499, 10.1016/j.biombioe.2004.11.008 Friedl, 2005, Prediction of heating values of biomass fuel from elemental composition, Anal. Chim. Acta, 544, 191, 10.1016/j.aca.2005.01.041 Callejón-Ferre, 2011, Erratum to: greenhouse crop residues: energy potential and models for the prediction of their higher heating value, Renew. Sust. Energy Rev., 15, 948, 10.1016/j.rser.2010.11.012 Bychkov, 2017, Prediction of higher heating values of plant biomass from ultimate analysis data, JTAC, 130, 1399 Jenkins, 1985, Correlation OF physical and chemical properties of terrestrial biomass with conversion, 371 Tillman, 1978, vol. 252p Jain, 1981, New method of calculating calorific values from elemental compositions of fossil fuels, Fuel, 60, 1079, 10.1016/0016-2361(81)90052-1 Kathiravale, 2003, Modeling the heating value of municipal solid Waste☆, Fuel, 82, 1119, 10.1016/S0016-2361(03)00009-7 Mason, 1980 Demirbaş, 1997, Calculation of higher heating values of biomass fuels, Fuel, 76, 431, 10.1016/S0016-2361(97)85520-2 Demirbas, 1997, Estimation of calorific values of fuels from lignocellulosics, Energy Sourc., 19, 765, 10.1080/00908319708908888 Demirbas, 2004, Combustion characteristics of different biomass fuels, Progr. Energy Combust. Sci., 30, 219, 10.1016/j.pecs.2003.10.004 Abu-Qudais, 2000, Energy content of municipal solid waste in Jordan and its potential utilization, Energy Convers. Manag., 41, 983, 10.1016/S0196-8904(99)00155-7 Callejón-Ferre, 2011, Greenhouse crop residues: energy potential and models for the prediction of their higher heating value, Renew. Sustain. Energy Rev., 15, 948, 10.1016/j.rser.2010.11.012 Cho, 1995, Estimation of the heating value of oily mill sludges from steel plant, Fuel, 74, 1918, 10.1016/0016-2361(95)80029-H Zanzi, 2002, Rapid pyrolysis of agricultural residues at high temperature, Biomass Bioenergy, 23, 357, 10.1016/S0961-9534(02)00061-2 Khan, 1991, New approach for estimating energy content of municipal solid waste, J. Environ. Eng., 117, 376, 10.1061/(ASCE)0733-9372(1991)117:3(376) Cordero, 2001, Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis, Fuel, 80, 1567, 10.1016/S0016-2361(01)00034-5 Meraz, 2003, A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition☆, Fuel, 82, 1499, 10.1016/S0016-2361(03)00075-9 Batra, 2008, Characterization of unburned carbon in bagasse fly ash, Fuel, 87, 2972, 10.1016/j.fuel.2008.04.010 Mott, 1940, The calorific value of carbon in coal: the Dulong relationship, Fuel, 19, 242 Selvig Wa, 1945, Calorific value of coal Hosseinzadeh, 2014, Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids, J. Mol. Liq., 200, 340, 10.1016/j.molliq.2014.10.033 Chen, 2014, The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process, Fuel, 126, 202, 10.1016/j.fuel.2014.02.034 Hemmat-Sarapardeh, 2020 Goodall, 1993 Gramatica, 2007, Principles of QSAR models validation: internal and external, QSAR Comb. Sci., 26, 694, 10.1002/qsar.200610151 Hemmati-Sarapardeh, 2016, On the evaluation of asphaltene precipitation titration data: modeling and data assessment, Fluid Phase Equil., 415, 88, 10.1016/j.fluid.2016.01.031 Leroy, 1987 Mohammadi, 2012, A novel method for evaluation of asphaltene precipitation titration data, Chem. Eng. Sci., 78, 181, 10.1016/j.ces.2012.05.009 Jenkins, 1998, Combustion properties of biomass, Fuel Process, 10.1016/S0378-3820(97)00059-3 Phyllis, 2012 Hofbauer, 2012 Grover, 2002 Domalski, 1986 Rose, 1977, Technical Data on Fuel IEA Bioenergy Task 32, 2013 Johnson Ja, 1951 WR, 1995 Suarez, 2000, Thermochemical properties of Cuban biomass, Energy Sourc., 22, 851, 10.1080/00908310051128156 García, 2012, Characterization of Spanish biomass wastes for energy use, Bioresour. Technol., 103, 249, 10.1016/j.biortech.2011.10.004 A, 1984 Parikh, 2005, A correlation for calculating HHV from proximate analysis of solid fuels, Fuel, 84, 487, 10.1016/j.fuel.2004.10.010 Miranda, 2009, Energetic characterization of densified residues from Pyrenean oak forest, Fuel, 88, 2106, 10.1016/j.fuel.2009.05.015