Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach

Physica D: Nonlinear Phenomena - Tập 133 Số 1-4 - Trang 137-144 - 1999
Roger Ghanem1, John Red-Horse2
1Department of Civil Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686, USA
2Sandia National Laboratories, MS0439, Department 9234, P.O. Box 5800, Albuquerque, NM 87185, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

M. Loève, Fonctions aleatoires du second ordre, supplement to P. Levy, Processus Stochastic et Mouvement Brownien, Paris, Gauthier Villars, 1948.

R. Ghanem, P. Spanos, The Stochastic Finite Element Method: a Spectral Approach, Springer, 1991.

S. Kakutani, in: J. Neyman (Ed.), Spectral analysis of stationary Gaussian processes, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California, Vol. II, 1961, pp. 239–247.

G. Kallianpur, Homogeneous chaos expansions, in: M. Rosenblatt, C. Van Atta, Statistical Models in Turbulence, Springer, Berlin, Heidelberg, 1972, pp. 230–254,.

N. Wiener,The homogeneous chaos, Amer. J. Math 60 (1938) 897-936.

R. Ghanem, Probabilistic characterization of transport in heterogeneous porous media, Comput. Meth. Appl. Mech. Eng. 158 (3-4) (1998).

Li, 1998, Adaptive polynomial chaos simulation applied to statistics of extremes in nonlinear random vibration, Probabilistic Eng. Mech., 13, 125, 10.1016/S0266-8920(97)00020-9

Ghanem, 1996, Numerical solution of spectral stochastic finite element systems, Comput. Meth. Appl. Mech. Eng., 129, 289, 10.1016/0045-7825(95)00909-4