Features of Complex Formation of Native and Polymeric β-Cyclodextrins with Sulfasalazine

Russian Journal of General Chemistry - Tập 93 - Trang 1130-1137 - 2023
M. A. Agafonov1, I. V Terekhova1
1G.A. Krestov Institute of Chemistry of Solutions of the Russian Academy of Sciences, Ivanovo, Russia

Tóm tắt

The complex formation of sulfasalazine with native and polymeric β-cyclodextrins in buffer solutions with a physiological pH value was studied using isothermal saturation and 1H NMR methods. It was found that sulfasalazine forms two types of complexes in reactions with above cyclodextrins, but only the formation of inclusion complexes determines the observed increase in drug solubility, which is more pronounced in the presence of polymeric β-cyclodextrin. The complex formation with β-cyclodextrin and its polymeric derivative leads to a decrease in the coefficients of sulfasalazine permeability through the model membrane, which is determined by both the stability constant of the complexes and their ability to pass through the membrane.

Tài liệu tham khảo

Ploskerm, G.L.and Croom, K.F., Drugs, 2005, vol. 65, no. 13, p. 1825. https://doi.org/10.2165/00003495-200565130-00008 Gassull, M.A. and Cabre, E., in Crohn’s Disease and Ulcerative Colitis, Baumgart, D.C., Ed., Berlin: Springer International Publishing AG, 2017, p. 311. Shadid, M., Gurau, G., Shamshina, J.L., Chuang, B.-C., Hailu, S., Guan, E., Chowdhury, S.K., Wu, J.-T., Rizvi, S.A.A., Griffin, R.J., and Rogers, R.D., Med. Chem. Commun., 2015, vol. 6, p. 1837. https://doi.org/10.1039/C5MD00290G Kuranov, D.Yu., Chibunova, E.S., Volkova, T.V., and Terekhova, I.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1325. https://doi.org/10.1134/S1070363218060439 Shadid, M., Gurau, G., Shamshina, J.L., Chuang, B.-C., Hailu, S., Guan, E., Chowdhury, S., Wu, J.-T., Rizvi, S.A.A., Griffin, R.J., and Rogers, R.D., Med. Chem. Commun., 2015, vol. 6, p. 1837. https://doi.org/10.1039/x0xx00000x Wu, W.-Y. and Su, C.-S., J. Cryst. Growth., 2017, vol. 460, p. 59. https://doi.org/10.1016/j.jcrysgro.2016.12.017 Chen, X., Li, D., Zhang, H., Duan, Y., and Huang, Y., Mol. Pharm., 2022, vol. 19, no. 11, p. 4370. https://doi.org/10.1021/acs.molpharmaceut.2c00785 Orooji, Y., Mortazavi-Derazkola, S., Ghoreishi, S.M., Amiri, M., and Salavati-Niasari, M., J. Hazard. Mater., 2020, vol. 400, article no. 123140. https://doi.org/10.1016/j.jhazmat.2020.123140 Jicsinszky, L., Martina, K. and Cravotto, G., J. Drug Deliv. Sci. Technol., 2021, vol. 64, article no. 102589. https://doi.org/10.1016/j.jddst.2021.102589 Braga, S.S., J. Drug Deliv. Sci. Technol., 2022, vol. 75, article no. 103650. https://doi.org/10.1016/j.jddst.2022.103650 Asija, R., Asija, S., Lamba, H.S., Bhandari, A., and Kataria, S., Res. J. Pharm. Technol., 2012, vol. 5, no. 1, p. 53. Zhou, Y.-Q., Huang, J., Han, P.-F., and Lv, X.-P., Asian J. Chem., 2012, vol. 24, no. 5, p. 1991. Osman, S.K., Soliman, G.M., Amin, M., and Zaky, A., Int. J. Pharm. Pharm. Sci., 2014, vol. 6, no. 7, p. 59. Crini, G., Environ. Chem. Lett., 2021, vol. 19, p. 2383. https://doi.org/10.1007/s10311-021-01204-z Simões, S.M.N., Rey-Rico, A., Concheiro, A., and Alvarez-Lorenzo, C., Chem. Commun., 2015, vol. 51, p. 6275. https://doi.org/10.1039/C4CC10388B Folch-Cano, C., Yazdani-Pedram, M., and Olea-Azar, C., Molecules, 2014, vol. 19, no. 9, p. 14066. https://doi.org/10.3390/molecules190914066 Shekhawat, P.B. and Pokharkar, V.B., Acta Pharm. Sin. B, 2017, vol. 7, no. 3, p. 260. https://doi.org/10.1016/j.apsb.2016.09.005 Yang, J., Li, K., He, D., Gu, J., JXu, J., Xie, J., Zhang, M., Liu, Y., Tan, Q. and Zhang, J., Drug Metab. Rev., 2020, vol. 52, p. 19. https://doi.org/10.1080/03602532.2020.1714646 Loftsson, T., Vogensen, S.B., Brewster, M.E., and Konráðsdóttir, F., J. Pharm. Sci., 2007, vol. 96, no. 10, p. 2532. https://doi.org/10.1002/jps.20992 Loftsson, T., Jarho, P., Másson, M. and Järvinen, T., Expert Opin Drug Deliv., 2005, vol. 2, no. 2, p. 335-351. https://doi.org/10.1517/17425247.2.1.335 Dahan, A., Beig, A., Lindley, D., and Miller, J.M., Adv. Drug Deliv. Rev., 2016, vol. 101, p. 99. https://doi.org/10.1016/j.addr.2016.04.018 Păduraru, D.N., Niculescu, A.-G., Bolocan, A., Andronic, O., Grumezescu, A.M., and Birla, R., Pharmaceutics, 2022, vol. 14, no. 8, p. 1748. https://doi.org/10.3390/pharmaceutics14081748 Periasamy, R., J. Carbohydr. Chem., 2021, vol. 40, p. 135. https://doi.org/10.1080/07328303.2021.1967970 Higuchi, T. and Connons, K.A., Adv. Anal. Chem. Instrum., 1965, vol. 4, p. 117. Jesus, M.B, Fraceto, L.F., Martini, M.F., Pickholz, M., Ferreira, C.V., and Paula, E., J. Pharm. Pharmacol., 2012, vol. 64, no. 6, p. 832. https://doi.org/10.1111/j.2042-7158.2012.01492.x Terekhova, I.V., Kumeev, R.S., and Alper, G.A., J. Incl. Phenom. Macrocycl. Chem., 2007, vol. 59, p. 301. https://doi.org/10.1007/s10847-007-9327-y Brandl, M., Flaten, G.E., and Bauer-Brandl, A., in Wiley Encyclopedia of Chemical Biology, Begley, T.P., Ed., Hoboken: John Wiley & Sons, Inc., 2008, p. 3204.