Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akimoto S, Syono Y (1967) High-pressure decomposition for some titanate spinels. J Chem Phys 47:1813–1817
Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. Am Mineral 73:714–726
Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500
Anderson OL, Nafe JE (1965) The bulk modulus-volume relationship for oxide compounds and related geophysical problems. J Geophys Res 70:3951–3963
Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America, Chantilly, pp 35–60
Antao SM, Hassan I, Crichton WA, Parise JB (2005) Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa. Am Mineral 90:1500–1505
Bosi F, Hålenius U, Skogby H (2008) Stoichiometry of synthetic ulvöspinel single crystals. Am Mineral 93:1312–1316
Bosi F, Hålenius U, Skogby H (2009) Crystal chemistry of the magnetite–ulvöspinel series. Am Mineral 94:181–189
Buddington AF, Lindsley DH (1964) Iron–titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357
Cameron EN (1971) Opaque minerals in certain lunar rocks from Apollo 12. Proc Second Lunar Sci Conf 1:193–206
Chang L, Chen Z, Liu X, Wang H (2013) Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication. Phys Chem Mineral 40:29–40
Chopelas A, Hofmeister AM (1991) Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar. Phys Chem Mineral 18:279–293
Diego Gatta G, Kantor I, Boffa Ballaran T, Dubrovinsky L, McCammon C (2007) Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: an in situ single-crystal X-ray diffraction study. Phys Chem Mineral 34:627–635
Diego Gatta G, Bosi F, McIntyre GJ, Hålenius U (2014) Static positional disorder in ulvöspinel: a single-crystal neutron diffraction study. Am Mineral 99:255–260
Fei Y (1995) Thermal expansion. In: Ahrens TJ (eds) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, Shelf 2, pp 29–44
Fleet ME, Liu X, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Mineral 37:1–9
Forster RH, Hall EO (1965) A neutron and X-ray diffraction study of ulvöspinel, Fe2TiO4. Acta Crystallogr 18:859–862
Haavik C, Stølen S, Fjellvåg H, Hanfland M, Häusermann D (2000) Equation of state of magnetite and its high-pressure modification: thermodynamics of the Fe-O system at high pressure. Am Mineral 85:514–523
Hammersley J (1996) Fit2D report. Europe Synchrotron Radiation Facility, Grenoble, France
He Q, Liu X, Hu X, Deng L, Chen Z, Li B, Fei Y (2012) Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction. Phys Chem Mineral 39:219–226
He Q, Liu X, Li B, Deng L, Chen Z, Liu X, Wang H (2013) Expansivity and compressibility of strontium and barium fluorapatite: significance of the M-site cations. Phys Chem Mineral 40:349–360
Hofmeister AM, Mao HK (2001) Evaluation of shear moduli and other properties of silicates with the spinel structure from IR spectroscopy. Am Mineral 86:622–639
Ishikawa Y, Sato S, Syono Y (1971) Neutron and magnetic studies of a single crystal of Fe2TiO4. J Phys Soc Jpn 31:452–460
Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413
Kyono A, Ahart M, Yamanaka T, Gramsch S, Mao HK, Hemley RJ (2011) High-pressure Raman spectroscopic studies of ulvöspinel Fe2TiO4. Am Mineral 96:1193–1198
Liebermann RC, Jackson I, Ringwood AE (1977) Elasticity and phase equilibria of spinel disproportionation reactions. Geophys J R astr Soc 50:553–586
Lilova KI, Pearce CI, Gorski C, Rosso KM, Navrotsky A (2012) Thermodynamics of the magnetite-ulvöspinel (Fe3O4–Fe2TiO4) solid solution. Am Mineral 97:1330–1338
Liu X, Prewitt CT (1990) High-temperature X-ray diffraction study of Co3O4: transition from normal to disordered spinel. Phys Chem Mineral 17:168–172
Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Mineral 93:1581–1584
Liu X, Shieh SR, Fleet ME, Zhang L (2009) Compressibility of a natural kyanite to 17.5 GPa. Prog Nat Sci 19:1281–1286
Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of ruby R1 fluorescence pressure gauge for 0.006 to 1 Mbar. J Appl Phys 49:3276–3283
O’Neill HStC, Pownceby MI, Wall VJ (1988) Ilmenite-rutile-iron and ulvöspinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvöspinel (Fe2TiO4). Geochim Cosmochim Acta 52:2065–2072
O’Neill HStC, Redfern SAT, Kesson S, Short S (2003) An in situ neutron diffraction study of cation disordering in synthetic qandilite Mg2TiO4 at high temperatures. Am Mineral 88:860–865
Ôno K, Chandler L, Ito A (1968) Mössbauer study of the ulvöspinel, Fe2TiO4. J Phys Soc Jpn 25:174–176
Reichmann HJ, Jacobsen SD (2004) High-pressure elasticity of a natural magnetite crystal. Am Mineral 89:1061–1066
Rozenberg GKh, Amiel Y, Xu WM, Pasternak MP, Jeanloz R, Hanfland M, Taylor RD (2007) Structural characterization of temperature- and pressure-induced inverse↔normal spinel transformation in magnetite. Phys Rev B 75:020102(R)
Sedler IK, Feenstra A, Peters T (1994) An X-ray powder diffraction study of synthetic (Fe, Mn)2TiO4 spinel. Eur J Mineral 6:873–885
Spencer K, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201
Syono Y, Fukai Y, Ishikawa Y (1971) Anomalous elastic properties of Fe2TiO4. J Phys Soc Jpn 31:471–476
Taylor RW (1964) Phase equilibria in the system FeO–Fe2O3–TiO2 at 1300 °C. Am Mineral 49:1016–1030
Tronche EJ, van Parker Kan M, de Vrise J, Wang Y, Sanehira T, Li J, Chen B, Gao L, Klemme S, McCammon CA, van Westrenen W (2010) The thermal equation of state FeTiO3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures. Am Mineral 95:1708–1716
Wang Z, O’Neill HSC, Lazor P, Saxena SK (2002) High pressure Raman spectroscopic study of spinel MgCr2O4. J Phys Chem Solids 63:2057–2061
Wang Z, Schiferl D, Zhao Y, O’Neill H St C (2003) High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. J Phys Chem Solids 64:2517–2523
Wang S, Liu X, Fei Y, He Q, Wang H (2012) In situ high-temperature powder X-ray diffraction study on the spinel solid solutions (Mg1−xMnx)Cr2O4. Phys Chem Mineral 39:189–198
Wechsler BA, Prewitt CT (1984) Crystal structure of ilmenite (FeTiO3) at high temperature and at high pressure. Am Mineral 69:176–185
Wechsler BA, Lindsley DH, Prewitt CT (1984) Crystal structure and cation distribution in titanomagnetites (Fe3−xTixO4). Am Mineral 69:754–770
Wu Y, Wu X, Qin S (2012) Pressure-induced phase transition of Fe2TiO4: X-ray diffraction and Mössbauer spectroscopy. J Solid State Chem 185:72–75
Yamanaka T, Mine T, Asogawa S, Nakamoto Y (2009) Jahn-Teller transition of Fe2TiO4 observed by maximum entropy method at high pressure and low temperature. Phys Rev B 80:134120
Yamanaka T, Kyono A, Nakamoto Y, Meng Y, Kharlamova S, Struzhkin VV, Mao HK (2013) High-pressure phase transitions of Fe3−xTixO4 solid solution up to 60 GPa correlated with electronic spin transition. Am Mineral 98:736–744