A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control
Tóm tắt
In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to acquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorporate many capabilities that have been only demonstrated separately. Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. Here we describe the instrument and its ability to apply 2–260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli (E. coli) bacteria, and see similar results to previous studies. This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.
Tài liệu tham khảo
Merkel R, Nassoy P, Leung A, Ritchie K, Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999;397:50–3.
Yago T, Lou J, Wu T, Yang J, Miner JJ, Coburn L, Lopez JA, Cruz MA, Dong JF, McIntire LV, et al. Platelet glycoprotein lb alpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J Clin Investig. 2008;118:3195–207.
Yakovenko O, Sharma S, Forero M, Tchesnokova V, Aprikian P, Kidd B, Mach A, Vogel V, Sokurenko E, Thomas WE. FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J Biol Chem. 2008;283:11596–605.
Daniels BR, Masi BC, Wirtz D. Probing single-cell micromechanics in vivo: the microrheology of C. Elegans developing embryos. Biophys J. 2006;90:4712–9.
Smith SB, Cui Y, Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996;271:795–9.
Block SM, Goldstein LS, Schnapp BJ. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 1990;348:348–52.
Svoboda K, Block SM. Force and velocity measured for single kinesin molecules. Cell. 1994;77:773–84.
Evans E. Probing the relation between force--lifetime--and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct. 2001;30:105–28.
De Vlaminck I, Henighan T, van Loenhout MT, Pfeiffer I, Huijts J, Kerssemakers JW, Katan AJ, van Langen-Suurling A, van der Drift E, Wyman C, Dekker C. Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett. 2011;11:5489–93.
De Vlaminck I, Dekker C. Recent advances in magnetic tweezers. Annu Rev Biophys. 2012;41:453–72.
Ribeck N, Saleh OA. Multiplexed single-molecule measurements with magnetic tweezers. Rev Sci Instrum. 2008;79:094301.
Snook JH, Guilford WH, High-Throughput Technique A. Reveals the load- and site density-dependent kinetics of E-Selectin. Cell Mol Bioeng. 2012;5:493–503.
Zhang Z, Menq CH. Three-dimensional particle tracking with subnanometer resolution using off-focus images. Appl Opt. 2008;47:2361–70.
van Loenhout MT, Kerssemakers JW, De Vlaminck I, Dekker C. Non-bias-limited tracking of spherical particles, enabling nanometer resolution at low magnification. Biophys J. 2012;102:2362–71.
Cnossen JP, Dulin D, Dekker NH. An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev Sci Instrum. 2014;85:103712.
Gosse C, Croquette V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J. 2002;82:3314–29.
Kauert DJ, Kurth T, Liedl T, Seidel R. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 2011;11:5558–63.
Kruithof M, Chien F, de Jager M, van Noort J. Subpiconewton dynamic force spectroscopy using magnetic tweezers. Biophys J. 2008;94:2343–8.
McAndrew CP, Tyson C, Zischkau J, Mehl P, Tuma PL, Pegg IL, Sarkar A. Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA-protein complexes. BioTechniques. 2016;60:21–7.
Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat Commun. 2013;4:1705.
Yang Y, Bai M, Klug WS, Levine AJ, Valentine MT. Microrheology of highly crosslinked microtubule networks is dominated by force-induced crosslinker unbinding. Soft Matter. 2013;9:383–93.
Yao M, Goult BT, Chen H, Cong P, Sheetz MP, Yan J. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci Rep. 2014;4:4610.
Tchesnokova V, Aprikian P, Yakovenko O, Larock C, Kidd B, Vogel V, Thomas W, Sokurenko E. Integrin-like allosteric properties of the catch bond-forming FimH adhesin of Escherichia Coli. J Biol Chem. 2008;283:7823–33.
Forero M, Yakovenko O, Sokurenko EV, Thomas WE, Vogel V. Uncoiling mechanics of Escherichia Coli type I fimbriae are optimized for catch bonds. PLoS Biol. 2006;4:e298.
Ishikawa Y, Chikazumi S. Design of High Power Electromagnets. Jpn J Appl Phys. 1962;1:155–73.
Maude A. End effects in a falling-sphere viscometer. Br J Appl Phys. 1961;12:293–5.
Ganatos P, Pfeffer R, Weinbaum S. A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries .2. Parallel motion. J Fluid Mech. 1980;99:755–83.
Matei G, Thoreson E. Precision and accuracy of thermal calibration of atomic force microscopy cantilever. Rev Sci Instrum. 2006;77(8):083703.
Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008;5:491–505.
Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52. -&.
Andersson M, Uhlin BE, Fallman E. The biomechanical properties of E. Coli pili for urinary tract attachment reflect the host environment. Biophys J. 2007;93:3008–14.
Whitfield MJ, Luo JP, Thomas WE. Yielding elastic tethers stabilize robust cell adhesion. PLoS Comput Biol. 2014;10:e1003971.
Whitfield M, Thomas WE. A Nanoadhesive composed of receptor-Ligand bonds. J Adhes. 2011;87:427–46.
Whitfield M, Ghose T, Thomas W. Shear-stabilized rolling behavior of E. Coli examined with simulations. Biophys J. 2010;99:2470–8.
Evans E, Kinoshita K, Simon S, Leung A. Long-lived, high-strength states of ICAM-1 bonds to beta2 integrin, I: lifetimes of bonds to recombinant alphaLbeta2 under force. Biophys J. 2010;98:1458–66.
Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman EJ, Wuite GJ. Acoustic force spectroscopy. Nat Methods. 2015;12:47–50.
Yang D, Ward A, Halvorsen K, Wong WP. Multiplexed single-molecule force spectroscopy using a centrifuge. Nat Commun. 2016;7:11026.
Soltani M, Lin J, Forties RA, Inman JT, Saraf SN, Fulbright RM, Lipson M, Wang MD. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nat Nanotechnol. 2014;9:448–52.
Chiou PY, Ohta AT, MC W. Massively parallel manipulation of single cells and microparticles using optical images. Nature. 2005;436:370–2.
McKendry R, Zhang J, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, Guntherodt HJ, Gerber C. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci U S A. 2002;99:9783–8.
Dufresne ER, Grier DG. Optical tweezer arrays and optical substrates created with diffractive optics. Rev Sci Instrum. 1998;69:1974–7.
Fazio T, Visnapuu ML, Wind S, Greene EC. DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. Langmuir. 2008;24:10524–31.
Baker JE, Badman RP, Wang MD. Nanophotonic trapping: precise manipulation and measurement of biomolecular arrays. WIREs Nanomed Nanobiotechnol. 2017;e1477. doi:10.1002/wnan.1477
Wu MC. Optoelectronic tweezers. Nat Photonics. 2011;5:322–4.
Berg-Sorensen K, Flyvbjerg H. Power spectrum analysis for optical tweezers. Rev Sci Instrum. 2004;75:594–612.
Lansdorp BM, Tabrizi SJ, Dittmore A, Saleh OA. A high-speed magnetic tweezer beyond 10,000 frames per second. Rev Sci Instrum. 2013;84:044301.
Wu T, Lin J, Cruz MA, Dong JF, Zhu C. Force-induced cleavage of single VWFA1A2A3 tridomains by ADAMTS-13. Blood. 2010;115:370–8.
del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Stretching single talin rod molecules activates vinculin binding. Science. 2009;323:638–41.
Thomas W. Catch bonds in adhesion. Annu Rev Biomed Eng. 2008;10:39–57.