Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement

Computer Methods in Applied Mechanics and Engineering - Tập 194 - Trang 4135-4195 - 2005
T.J.R. Hughes1, J.A. Cottrell1, Y. Bazilevs1
1Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712-0027, United States

Tài liệu tham khảo

Rogers, 2001 T.J. Barth, Simplified numerical methods for gas dynamics systems on triangulated domains, Ph.D. Thesis, Department of Aeronautics and Astronautics, Stanford University (1998). M. McMullen, A. Jameson, J.J. Alonso, Application of a non-linear frequency domain solver to the Euler and Navier–Stokes equations, 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2002-0120, Reno, NV, 2002. M. Gee, W.A. Wall, E. Ramm, Parallel multilevel solutions of nonlinear shell structures, Comput. Methods Appl. Mech. Engrg. (accepted). G.M. Stanley, Continuum-based shell elements, Ph.D. Thesis, Division of Applied Mechanics, Stanford University, 1985. Barth, 1998, Numerical methods for gasdynamic systems on unstructured meshes, Vol. 5, 195 S. Yunus, private communication. Szabó, 2004, The p-version of the finite element method, vol. 1 Szabó, 1991 E. Rank, A. Düster, V. Nübel, K. Preusch, O.T. Bruhns, High order finite elements for shells, Comput. Methods Appl. Mech. Engrg. (accepted). Abhyankar, 1987, Automatic parameterization of rational curves and surfaces I: conics and conicoids, Comput.-Aided Des., 19, 11, 10.1016/0010-4485(87)90147-3 Abhyankar, 1987, Automatic parameterization of rational curves and surfaces II: cubics and cubicoids, Comput.-Aided Des., 19, 499, 10.1016/0010-4485(87)90235-1 Abhyankar, 1988, Automatic parameterization of rational curves and surfaces III: algebraic plane curves, Comput.-Aided Geomet. Des., 5, 309, 10.1016/0167-8396(88)90011-8 Abhyankar, 1989, Automatic parameterization of rational curves and surfaces IV: algebraic space curves, ACM Transactions on Graphics, 4, 325, 10.1145/77269.77273 Bajaj, 1999, Energy formulations of A-splines, Comput.-Aided Geomet. Des., 16, 39, 10.1016/S0167-8396(98)00029-6 Bajaj, 1995, Modeling with cubic A-patches, ACM Transactions on Graphics, 14, 103, 10.1145/221659.221662 Cirak, 2001, Fully C1-conforming subdivision elements for finite deformation thin shell analysis, Int. J. Numer. Methods Engrg., 51, 813, 10.1002/nme.182.abs Cirak, 2000, Subdivision surfaces: a new paradigm for thin shell analysis, Int. J. Numer. Methods Engrg., 47, 2039, 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1 Cirak, 2002, Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput.-Aided Des., 34, 137, 10.1016/S0010-4485(01)00061-6 Hughes, 2000 Piegl, 1997, 10.1007/978-3-642-59223-2 Kagan, 2003, Mechanically based models: adaptive refinement for B-spline finite element, Int. J. Numer. Methods Engrg., 57, 1145, 10.1002/nme.717 Bonet, 2004, Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems, Comput. Methods Appl. Mech. Engrg., 193, 1245, 10.1016/j.cma.2003.12.018 Breitkopf, 2004, Integration constraint in diffuse element method, Comput. Methods Appl. Mech. Engrg., 193, 1203, 10.1016/j.cma.2003.12.014 Chen, 2004, An extended meshfree method for boundary value problems, Comput. Methods Appl. Mech. Engrg., 193, 1085, 10.1016/j.cma.2003.12.007 Chen, 2004, A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials, Comput. Methods Appl. Mech. Engrg., 193, 1277, 10.1016/j.cma.2003.12.020 Dongdong, 2004, Locking-free stabilized conforming nodal integration for meshfree Mindlin–Reissner plate formulation, Comput. Methods Appl. Mech. Engrg., 193, 1065, 10.1016/j.cma.2003.12.006 Fasshauer, 2004, Toward approximate moving least squares approximation with irregularly spaced centers, Comput. Methods Appl. Mech. Engrg., 193, 1231, 10.1016/j.cma.2003.12.017 Fernandez-Mendez, 2004, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Engrg., 193, 1257, 10.1016/j.cma.2003.12.019 Huerta, 2004, A comparison of two formulations to blend finite elements and mesh-free methods, Comput. Methods Appl. Mech. Engrg., 193, 1105, 10.1016/j.cma.2003.12.009 Huerta, 2004, Pseudo-divergence-free element free Galerkin method for incompressible fluid flow, Comput. Methods Appl. Mech. Engrg., 193, 1119, 10.1016/j.cma.2003.12.010 Li, 2004, Positivity conditions in meshless collocation methods, Comput. Methods Appl. Mech. Engrg., 193, 1171, 10.1016/j.cma.2003.12.013 Li, 2004, Reproducing kernel element method. Part II: globally conforming Im/Cn hierarchies, Comput. Methods Appl. Mech. Engrg., 193, 953, 10.1016/j.cma.2003.12.002 Liu, 2004, Reproducing kernel element method. Part I: theoretical formulation, Comput. Methods Appl. Mech. Engrg., 193, 933, 10.1016/j.cma.2003.12.001 Lu, 2004, Reproducing kernel element method. Part III: generalized enrichment and applications, Comput. Methods Appl. Mech. Engrg., 193, 989, 10.1016/j.cma.2003.12.003 Rabczuk, 2004, Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 1035, 10.1016/j.cma.2003.12.005 Simkins, 2004, Reproducing kernel element method. Part IV: globally compatible Cn (n⩾1) triangular hierarchy, Comput. Methods Appl. Mech. Engrg., 193, 1013, 10.1016/j.cma.2003.12.004 Sulsky, 2004, Implicit dynamics in the material-point method, Comput. Methods Appl. Mech. Engrg., 193, 1137, 10.1016/j.cma.2003.12.011 Wang, 2004, Extended immersed boundary method using FEM and RKPM, Comput. Methods Appl. Mech. Engrg., 193, 1305, 10.1016/j.cma.2003.12.024 Wu, 2004, Dynamically knots setting in meshless method for solving time dependent propagations equation, Comput. Methods Appl. Mech. Engrg., 193, 1221, 10.1016/j.cma.2003.12.015 Gould, 1999 Timoshenko, 1959 Bischoff, 2004, Models and finite elements for thin-walled structures, vol. 2 C. Felippa, Course notes for advanced finite element methods, http://caswww.colorado.edu/Felippa.d/FelippaHome.d/Home.html. Belytschko, 1985, Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Engrg., 51, 221, 10.1016/0045-7825(85)90035-0 Canuto, 1988 Moin, 2001 Hughes, 1988, A mixed finite element formulation for Reissner–Mindlin plate theory: uniform convergence of all higher order spaces, Comput. Methods Appl. Mech. Engrg., 67, 223, 10.1016/0045-7825(88)90127-2 Engel, 2002, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191, 3669, 10.1016/S0045-7825(02)00286-4 Oñate, 1993, Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle, Engrg. Comput., 10, 543, 10.1108/eb023924 Oñate, 2000, Rotation-free triangular plate and shell elements, Int. J. Numer. Methods Engrg., 47, 557, 10.1002/(SICI)1097-0207(20000110/30)47:1/3<557::AID-NME784>3.0.CO;2-9 Phaal, 1992, A simple class of finite-elements for plate and shell problems: 1. Elements for beams and thin flat plates, Int. J. Numer. Methods Engrg., 35, 955, 10.1002/nme.1620350502 Phaal, 1992, A simple class of finite-elements for plate and shell problems: 2. An element for thin shells with only translational degrees of freedom, Int. J. Numer. Methods Engrg., 35, 979, 10.1002/nme.1620350503 Brooks, 1982, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199, 10.1016/0045-7825(82)90071-8 Akin, 2004, Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements, Comput. Methods Appl. Mech. Engrg., 193, 1909, 10.1016/j.cma.2003.12.050 Bischoff, 2004, Improving stability and accuracy of Reissner–Mindlin plate finite elements via algebraic subgrid scale stabilization, Comput. Methods Appl. Mech. Engrg., 193, 1491, 10.1016/j.cma.2003.12.036 Bochev, 2004, On inf-sup stabilized finite element methods for transient problems, Comput. Methods Appl. Mech. Engrg., 193, 1471, 10.1016/j.cma.2003.12.034 Burman, 2004, Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems, Comput. Methods Appl. Mech. Engrg., 193, 1437, 10.1016/j.cma.2003.12.032 Codina, 2004, Approximation of the incompressible Navier–Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes, Comput. Methods Appl. Mech. Engrg., 193, 1403, 10.1016/j.cma.2003.12.030 Coutinho, 2004, Stabilized methods and post-processing techniques for miscible displacements, Comput. Methods Appl. Mech. Engrg., 193, 1421, 10.1016/j.cma.2003.12.031 Gravemeier, 2004, A three-level finite element method for the instationary incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 193, 1323, 10.1016/j.cma.2003.12.027 Harari, 2004, Stability of semidiscrete formulations for parabolic problems at small time steps, Comput. Methods Appl. Mech. Engrg., 193, 1491, 10.1016/j.cma.2003.12.035 Hauke, 2004, Computing reactive flows with a field Monte Carlo formulation and multi-scale methods, Comput. Methods Appl. Mech. Engrg., 193, 1455, 10.1016/j.cma.2003.12.033 Koobus, 2004, A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes - application to vortex shedding, Comput. Methods Appl. Mech. Engrg., 193, 1367, 10.1016/j.cma.2003.12.028 Masud, 2004, A multiscale/stabilized finite element method for the advection–diffusion equation, Comput. Methods Appl. Mech. Engrg., 193, 1997, 10.1016/j.cma.2003.12.047 Tezduyar, 2004, Enhanced-discretization space–time technique (EDSTT), Comput. Methods Appl. Mech. Engrg., 193, 1385, 10.1016/j.cma.2003.12.029 Chalot, 2004, Industrial aerodynamics, Vol. 3 Johnson, 1984, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 285, 10.1016/0045-7825(84)90158-0 Hughes, 2004, Multiscale and stabilized methods, vol. 3 Hughes, 1995, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 387, 10.1016/0045-7825(95)00844-9 Hughes, 1998, The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 3, 10.1016/S0045-7825(98)00079-6 Wahlbin, 1991, Local behavior in finite element methods, vol. 2, 353 T.D. Blacker, CUBIT mesh generation environment users manual vol. 1, Technical Report, Sandia National Laboratories, Albuquerque, NM, 1994. Qin, 1996, Triangular NURBS and their dynamic generalizations, Comput.-Aided Geomet. Des., 14, 325, 10.1016/S0167-8396(96)00062-3 Höllig, 2003 Kravchenko, 1996, Zonal embedded grids for numerical simulation of wall-bounded turbulent flows, J. Computat. Phys., 127, 412, 10.1006/jcph.1996.0184 Kravchenko, 1999, B-spline method and zonal grids for simulation of complex turbulent flows, J. Computat. Phys., 151, 757, 10.1006/jcph.1999.6217 Kwok, 2001, A critical evaluation of the resolution properties of B-spline and compact finite difference methods, J. Computat. Phys., 174, 510, 10.1006/jcph.2001.6919 Shariff, 1998, Two-dimensional mesh embedding for B-spline methods, J. Computat. Phys., 145, 471, 10.1006/jcph.1998.6053 Laursen, 2002 Wriggers, 2002 Qin, 1996, D-NURBS: a physics-based framework for geometric design, IEEE Trans. Visual. Comput. Graph., 2, 85, 10.1109/2945.489389