Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties
Tài liệu tham khảo
Choi, 2008, Reinforcement with carbon nanotubes in aluminum matrix composites, Scr Mater, 59, 360, 10.1016/j.scriptamat.2008.04.006
Dong, 2001, An investigation of the sliding wear behavior of Cu–matrix composite reinforced by carbon nanotubes, Mater Sci Eng A, 313, 83, 10.1016/S0921-5093(01)00963-7
Kim, 2006, Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix composites, Mater Sci Eng A, 430, 27, 10.1016/j.msea.2006.04.085
Cha, 2005, Extraordinary strengthening effect of carbon nanotubes in metal–matrix composites processed by molecular-level mixing, Adv Mater, 17, 1377, 10.1002/adma.200401933
Jenei, 2011, Microstructure and hardness of copper–carbon nanotube composites consolidated by high pressure torsion, Mater Sci Eng A, 528, 4690, 10.1016/j.msea.2011.02.066
Esawi, 2011, The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites, Compos Part A-Appl, 42, 234, 10.1016/j.compositesa.2010.11.008
Yoo, 2013, Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes, Scr Mater, 68, 711, 10.1016/j.scriptamat.2013.01.013
Stein, 2012, Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes, Carbon, 50, 2264, 10.1016/j.carbon.2012.01.044
Kwon, 2009, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon, 47, 570, 10.1016/j.carbon.2008.10.041
Chen, 2000, Carbon-nanotube metal–matrix composites prepared by electroless plating, Compos Sci Technol, 60, 301, 10.1016/S0266-3538(99)00127-X
Kuilla, 2010, Recent advances in graphene based polymer composites, Prog Polym Sci, 35, 1350, 10.1016/j.progpolymsci.2010.07.005
Wan, 2013, Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process, Compos Sci Technol, 82, 60, 10.1016/j.compscitech.2013.04.009
Porwal, 2013, Ceramic. Graphene reinforced alumina nano-composites, Carbon, 64, 359, 10.1016/j.carbon.2013.07.086
Ramirez, 2012, Graphene nanoplatelet/silicon nitride composites with high electrical conductivity, Carbon, 50, 3607, 10.1016/j.carbon.2012.03.031
Stephen, 2011, Graphene–aluminum composites, Mater Sci Eng A, 528, 7933, 10.1016/j.msea.2011.07.043
Wang, 2012, Reinforcement with graphene nanosheets in aluminum matrix composites, Scr Mater, 66, 594, 10.1016/j.scriptamat.2012.01.012
Chen, 2012, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix composites, Scr Mater, 67, 29, 10.1016/j.scriptamat.2012.03.013
Yoo, 2013, A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites, Carbon, 61, 487, 10.1016/j.carbon.2013.04.105
XG Sciences. XMLG_ graphene nanoplatelets – Grade C. XG Sciences Documentation; 2012.
Choi, 2010, Synthesis of graphene and its applications: a review, Crit Rev Solid State Mater Sci, 35, 52, 10.1080/10408430903505036
Ferrari, 2006, Raman spectrum of graphene and graphene layers, Phys Rev Lett, 97, 187, 10.1103/PhysRevLett.97.187401
Dresselhaus, 2010, Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett, 10, 751, 10.1021/nl904286r
He, 2007, An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al–matrix composites, Adv Mater, 19, 1128, 10.1002/adma.200601381
Stout, 1989, Experimental deformation textures of OFE copper and 70:30 brass from wire drawing, compression, and torsion, Metall Trans A, 20, 125, 10.1007/BF02647499
Yakobson, 1998, Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes, Appl Phys Lett, 72, 918, 10.1063/1.120873
Min, 2011, Mechanical properties of graphene under shear deformation, Appl Phys Lett, 98, 10.1063/1.3534787
Bao, 2009, Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nat Nanotechnol, 4, 562, 10.1038/nnano.2009.191
Nelson, 1945, The thermal expansion of graphite from 15°C to 800°C: Part I. Experimental, Proc Phys Soc, 57, 477, 10.1088/0959-5309/57/6/303
Gao, 2010, Epitaxial graphene on Cu (111), Nano Lett, 10, 3512, 10.1021/nl1016706
Xu, 2010, Interface structure and mechanics between graphene and metal substrates: a first-principles study, J Phys Condens Matter, 22, 485301, 10.1088/0953-8984/22/48/485301
Ardell, 1985, Precipitation hardening, Metall Trans A, 16A, 2131, 10.1007/BF02670416
Nie, 2008, Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates, Acta Mater, 56, 3490, 10.1016/j.actamat.2008.03.028
Hull, 2004
Frost, 1983
Nie, 2003, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scr Mater, 48, 1009, 10.1016/S1359-6462(02)00497-9