Investigation of Material Properties Based on 3D Graphite Morphology for Compacted Graphite Iron

Chenglu Zou1, Yan Zhao2, Gang Zhu1,2,3, Jianchao Pang1, Shaogang Wang1, Yangzhen Liu4, Feng Liu2,5, Shouxin Li1, Zhefeng Zhang1
1Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
2School of Mechanical Engineering, Liaoning Petrochemical University, Fushun, China
3Key Laboratory of Pressure Systems and Safety, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
4Institute of Advance Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, China
5Jihua Laboratory, Foshan, China

Tóm tắt

The strength and thermal conductivity of compacted graphite iron (CGI) are crucial performance indicators in its engineering application. The presence of graphite in CGI significantly influences the two properties. In the previous studies, graphite in CGI was often described using two-dimensional (2D) morphology. In this study, the three-dimensional (3D) size, shape, and distribution of graphite in CGI were analyzed using X-ray tomography. Based on this, a new method is introduced to calculate the 3D vermicularity and compare it with the 2D vermicularity in terms of tensile properties and thermal conductivity. The results demonstrate that vermicular graphite exhibits greater connectivity in 3D observation compared to 2D observation. Therefore, the calculation method of 3D vermicularity is determined by considering the surface area and volume of the connected graphite. Then a linear relationship between 3 and 2D vermicularity has been observed. By comparing the correlation coefficient, it has been found that the 3D vermicularity offers a more accurate method to establish the relationship among graphite morphology, thermal conductivity and tensile property of CGI.

Tài liệu tham khảo

D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan, A. Shyam, B. Wang, R. England, C. Daniel, Prog. Mater. Sci. 103, 109 (2019) C.L. Zou, J.C. Pang, Y. Qiu, R. Liu, S.X. Li, G.X. Jing, C.G. Xu, Z.F. Zhang, Int. J. Fatigue 161, 106881 (2022) V. Norman, P. Skoglund, D. Leidermark, J. Moverare, Int. J. Fatigue 99, 258 (2017) A. Shyam, S. Hawkins, D. Erdman, R. England, G. Muralidharan, Mater. Sci. Forum 783, 2388 (2014) Y.L. Yang, Z.Y. Cao, Z.S. Lian, H.X. Yu, Adv. Mater. Res. 95, 194 (2011) F. Iacoviello, V.D. Cocco, Eng. Fract. Mech. 248, 167 (2016) G.Q. Shi, Z. Yang, J.P. Li, D. Tao, Z.J. Ma, J. Mater. Res. Technol. 9, 8186 (2020) C.L. Zou, J.C. Pang, L.J. Chen, S.X. Li, Z.F. Zhang, Int. J. Fatigue 135, 105576 (2020) Y. Liu, J. Xing, Y. Li, Y. Wang, L. Wang, B. Zheng, D. Tao, J. Mater. Res. 31, 2516 (2016) A. Hatton, M. Engstler, P. Leibenguth, F. Mucklich, Adv. Eng. Mater. 13, 136 (2011) R.I. Soeudy, Materialwiss. Werkstofftech. 33, 73 (2002) M.C. Rukadikar, G.P. Reddy, J. Mater. Res. 21, 4403 (1986) W.J. Yang, J.C. Pang, L. Wang, S.G. Wang, Y.Z. Liu, L. Hui, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 814, 141244 (2021) Y.Y. Zhang, J.C. Pang, R.L. Shen, Y. Qiu, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 713, 260 (2018) T. Sjogren, P. Vomacka, I.L. Svensson, Int. J. Cast Met. Res. 17, 65 (2004) ASTM Standard E2567–13, Standard test method for determining nodularity and nodule count in ductile iron using image analysis. ASTM Standard A247–10, Standard test method for evaluating the microstructure of graphite in iron castings A. Velichko, C. Holzapfel, F. Mücklich, Adv. Eng. Mater. 9, 39 (2007) A. Velichko, A. Wiegmann, F. Mucklich, Acta Mater. 57, 5023 (2009) S.G. Wang, S.H. Wu, Acta Metall. Sin. 49, 897 (2013) Y.F. Cao, Y. Chen, D.Z. Li, Acta Mater. 107, 325 (2016) GB/T 26656–2011, Vermicular graphite cast iron metallographic inspection X. Kong, Y. Liu, M.H. Chen, T. Zhang, F.H. Wang, Acta Metall. Sin. -Engl. Lett. 34, 900 (2021) D. Holmgren, Int. J. Cast Met. Res. 18, 331 (2005) D. Holmgren, Doktorsavhandlingar vid Chalmers Tekniska Hogskola 2471, 67 (2006) C.L. Zou, L.J. Chen, J.C. Pang, M. Wang, Y. Qiu, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 763, 138101 (2019) C.G. Chao, T.S. Lui, M.H. Hon, J. Mater. Res. 24, 2610 (1989) Y.Z. Liu, Y.F. Li, J.D. Xing, S.G. Wang, B.C. Zhang, T. Dong, L. Wei, Mater. Charact. 144, 155 (2018) D. Holmgren, R. Kallbom, Metall. Mater. Trans. A 38, 268 (2007) T. Matsushita, A.G. Saro, L. Elmquist, A.E.W. Jarfors, Int. J. Cast Met. Res. 31, 135 (2018) A.L. Jiang, A. Shao, L. Song, M. Hua, H. Zheng, X. Zhang, X. Tian, X. Lin, Materials 16, 2158 (2023) K. Dimitris, B.S. Efthymia, Computation. Stat. 25, 645 (2010) M. Bazdar, H.R. Abbasi, A.H. Yaghtin, J. Rassizadehghani, J. Mater. Process. Technol. 209, 1701 (2009) Y. Qiu, J.C. Pang, S.X. Li, E.N. Yang, W.Q. Fu, M.X. Liang, Z.F. Zhang, Mater. Sci. Eng. A 664, 75 (2016) Y. Qiu, J.C. Pang, E.N. Yang, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 677, 290 (2016)