Methanogens, sulphate and heavy metals: a complex system

Springer Science and Business Media LLC - Tập 14 - Trang 537-553 - 2015
Lara M. Paulo1, Alfons J. M. Stams1,2, Diana Z. Sousa1
1Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
2Centre of Biological Engineering, University of Minho, Braga, Portugal

Tóm tắt

Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogas—a renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria, SRB). This review gives an overview of previous research and pilot-scale studies that shed some light on the effects of sulphate and heavy metals on methanogenesis. Despite the numerous studies on this subject, comparison is not always possible due to differences in the experimental conditions used and parameters explained. An overview of the possible benefits of methanogens and SRB co-habitation is also covered. Small amounts of sulphide produced by SRB can precipitate with metals, neutralising the negative effects of sulphide accumulation and free heavy metals on methanogenesis. Knowledge on how to untangle and balance sulphate reduction and methanogenesis is crucial to take advantage of the potential for the utilisation of biogenic sulphide as a metal detoxification agent with minimal loss in methane production in anaerobic digesters.

Tài liệu tham khảo

Abdel-Shafy HI, Mansour MSM (2014) Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egypt J Petr 23:409–417. doi:10.1016/j.ejpe.2014.09.009 Bennett BD, Brutinel ED, Gralnick JA (2015) A ferrous iron exporter mediates iron resistance in Shewanella oneidensis MR-1. Appl Environ Microbiol 81:7938–7944. doi:10.1128/aem.02835-15 Bhattacharya SK, Madura RL, Uberoi V, Haghighi-Podeh MR (1995a) Toxic effects of cadmium on methanogenic systems. Water Res 29:2339–2345. doi:10.1016/0043-1354(95)00066-t Bhattacharya SK, Uberoi V, Madura RL, Haghighi-Podeh MR (1995b) Effect of cobalt on methanogenesis. Environ Technol 16:271–278. doi:10.1080/09593331608616269 Booth GH, Mercer SJ (1963) Resistance to copper of some oxidizing and reducing bacteria. Nature 199:622. doi:10.1038/199622a0 Capone DG, Reese DD, Kiene RP (1983) Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments. Appl Environ Microbiol 45:1586–1591 Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9. doi:10.1111/j.1574-6941.2000.tb00665.x Chellapandi P (2011) In silico description of cobalt and nickel assimilation systems in the genomes of methanogens. Syst Synth Biol 5:105–114. doi:10.1007/s11693-011-9087-2 Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. doi:10.1016/j.biortech.2007.01.057 Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534. doi:10.1016/j.biotechadv.2014.10.005 Chipasa KB (2003) Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Manage 23:135–143. doi:10.1016/S0956-053X(02)00065-X Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek 67:29–46. doi:10.1007/bf00872194 Colleran E, Pender S, Philpott U, O’Flaherty V, Leahy B (1998) Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater. Biodegradation 9:233–245. doi:10.1023/A:1008389722892 Collins YE, Stotzky G (1989) Factors affecting the toxicity of heavy metals to microbes. In: Beveridge TJ, Doyle RJ (eds) Metal Ions and Bacteria. Wiley, New York, pp 31–90 Colussi I, Cortesi A, Della Vedova L, Gallo V, Robles FK (2009) Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor. Bioresour Technol 100:6290–6294. doi:10.1016/j.biortech.2009.07.041 Dar S, Kleerebezem R, Stams AM, Kuenen JG, Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78:1045–1055. doi:10.1007/s00253-008-1391-8 Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35:992–998. doi:10.1016/j.biombioe.2010.12.022 Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692. doi:10.1007/s002530051116 Fang HP, Hui HH (1994) Effect of heavy metals on the methanogenic activity of starch-degrading granules. Biotechnol Lett 16:1091–1096. doi:10.1007/bf01022409 Feng XM, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste—linking process to microbial communities. FEMS Microbiol Ecol 74:226–240. doi:10.1111/j.1574-6941.2010.00932.x Fetzer S, Conrad R (1993) Effect of redox potential on methanogenesis by Methanosarcina barkeri. Arch Microbiol 160:108–113. doi:10.1007/bf00288711 Fortin D, Southam G, Beveridge TJ (1994) Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly isolated Desulfotomaculum species and its relation to nickel resistance. FEMS Microbiol Ecol 14:121–132. doi:10.1111/j.1574-6941.1994.tb00099.x Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. doi:10.1016/j.jenvman.2010.11.011 Gadd G (2009) Heavy metal pollutants: environmental and biotechnological aspects. In: Schaechter M (ed) Applied Microbiology: Industrial| Heavy Metal Pollutants. Elsevier, Oxford, pp 321–334 Gadd GM, Griffiths AJ (1977) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317. doi:10.1007/bf02013274 Gadd GM, White C (1993) Microbial treatment of metal pollution— a working biotechnology? Trends Biotechnol 11:353–359. doi:10.1016/0167-7799(93)90158-6 Gonzalez-Estrella J, Sierra-Alvarez R, Field JA (2013) Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge. J Hazard Mater 260:278–285. doi:10.1016/j.jhazmat.2013.05.029 Gonzalez-Estrella J, Puyol D, Sierra-Alvarez R, Field JA (2015) Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. J Hazard Mater 283:755–763. doi:10.1016/j.jhazmat.2014.10.030 Gupta A, Flora JRV, Gupta M, Sayles GD, Suidan MT (1994) Methanogenesis and sulfate reduction in chemostats—I Kinetic studies and experiments. Water Res 28:781–793. doi:10.1016/0043-1354(94)90085-x Gustavsson J, Svensson BH, Karlsson A (2011) The feasibility of trace element supplementation for stable operation of wheat stillage-fed biogas tank reactors. Water Sci Technol 64:320–325. doi:10.2166/wst.2011.633 Gustavsson J, Shakeri Yekta S, Sundberg C, Karlsson A, Ejlertsson J, Skyllberg U, Svensson BH (2013) Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Appl Energy 112:473–477. doi:10.1016/j.apenergy.2013.02.009 Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467. doi:10.1002/jobm.200700275 Hammack R, Edenborn H (1992) The removal of nickel from mine waters using bacterial sulfate reduction. Appl Microbiol Biotechnol 37:674–678. doi:10.1007/bf00240748 Hao OJ (2000) Metal effects on sulfur cycle bacteria and metal removal by sulfate reducing bacteria. In: Lens PNL, Hulshoff Pol L (ed.) Environmental technologies to treat sulphur pollution: principles and engineering. London, GB: IWA London, pp: 393-414 Hard BC, Friedrich S, Babel W (1997) Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol Res 152:65–73. doi:10.1016/S0944-5013(97)80025-0 Hayes TD, Theis TL (1978) The distribution of heavy metals in anaerobic digestion. J Water Pollut Control Fed 50:61–72 Hirano S, Matsumoto N, Morita M, Sasaki K, Ohmura N (2013) Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus. Lett Appl Microbiol 56:315–321. doi:10.1111/lam.12059 Hughes MN, Poole RK (1991) Metal speciation and microbial growth—the hard (and soft) facts. Microbiology 137:725–734. doi:10.1099/00221287-137-4-725 Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113. doi:10.1016/j.hydromet.2006.03.017 Isa Z, Grusenmeyer S, Verstraete W (1986a) Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Appl Environ Microbiol 51:580–587 Isa Z, Grusenmeyer S, Verstraete W (1986b) Sulfate reduction relative to methane production in high-rate anaerobic digestion: technical aspects. Appl Environ Microbiol 51:572–579 Jarrell KF, Saulnier M, Ley A (1987) Inhibition of methanogenesis in pure cultures by ammonia, fatty acids, and heavy metals, and protection against heavy metal toxicity by sewage sludge. Can J Microbiol 33:551–554. doi:10.1139/m87-093 Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci 7:541–564. doi:10.1002/elsc.200720216 Karhadkar PP, Audic J-M, Faup GM, Khanna P (1987) Sulfide and sulfate inhibition of methanogenesis. Water Res 21:1061–1066. doi:10.1016/0043-1354(87)90027-3 Karlsson A, Einarsson P, Schnurer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114:446–452. doi:10.1016/j.jbiosc.2012.05.010 Karri S, Sierra-Alvarez R, Field JA (2006) Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge. Chemosphere 62:121–127. doi:10.1016/j.chemosphere.2005.04.016 Karvelas M, Katsoyiannis A, Samara C (2003) Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 53:1201–1210. doi:10.1016/S0045-6535(03)00591-5 Khan AW, Trottier TM (1978) Effect of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge. Appl Environ Microbiol 35:1027–1034 Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinaga Y, Abe N, Morimura S (2001) Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. J Biosci Bioeng 91:590–595. doi:10.1016/S1389-1723(01)80179-1 Kieu HTQ, Müller E, Horn H (2011) Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Res 45:3863–3870. doi:10.1016/j.watres.2011.04.043 Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wießner A, Kästner M, Müller RA (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411. doi:10.1002/elsc.200420048 Koster IW, Rinzema A, de Vegt AL, Lettinga G (1986) Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res 20:1561–1567. doi:10.1016/0043-1354(86)90121-1 Krishnanand YM, Parkin GF, Peng CY, Kuo W-C, Zablon IO, Lebduschka V (1993) Sulfide toxicity in anaerobic systems fed sulfate and various organics. Water Environ Res 65:100–109. doi:10.2307/25044274 Kroiss H, Plahl-Wabnegg F (1983) Sulphide toxicity with anaerobic wastewater treatment. Proceedings of the European Symposium on Anaerobic Wastewater Treatment (AWWT):72–78 Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. doi:10.1038/nrmicro3028 Lens PNL, Visser A, Janssen AJH, Pol LWH, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88. doi:10.1080/10643389891254160 Lin C-Y (1992) Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion. Water Res 26:177–183. doi:10.1016/0043-1354(92)90217-r Lin C-Y (1993) Effect of heavy metals on acidogenesis in anaerobic digestion. Water Res 27:147–152. doi:10.1016/0043-1354(93)90205-v Lin CY, Chao SS (1996) Effect of heavy metals on acidogenesis in the upflow anaerobic sludge blanket process. J Chin Inst Environ Eng 6:261–268 Lin C-Y, Chen C-C (1997) Toxicity-resistance of sludge biogranules to heavy metals. Biotechnol Lett 19:557–560. doi:10.1023/a:1018345622030 Lin C-Y, Chen C-C (1999) Effect of heavy metals on the methanogenic UASB granule. Water Res 33:409–416. doi:10.1016/s0043-1354(98)00211-5 Lira-Silva E, Santiago-Martínez MG, Hernández-Juárez V, García-Contreras R, Moreno-Sánchez R, Jasso-Chávez R (2012) Activation of methanogenesis by cadmium in the marine archaeon Methanosarcina acetivorans. PLoS ONE 7:e48779. doi:10.1371/journal.pone.0048779 Lira-Silva E, Santiago-Martínez MG, García-Contreras R, Zepeda-Rodríguez A, Marín-Hernández A, Moreno-Sánchez R, Jasso-Chávez R (2013) Cd2+ resistance mechanisms in Methanosarcina acetivorans involve the increase in the coenzyme M content and induction of biofilm synthesis. Environ Microbiol Rep 5:799–808. doi:10.1111/1758-2229.12080 Liu D, Dong H, Bishop ME, Wang H, Agrawal A, Tritschler S, Eberl DD, Xie S (2011) Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim Cosmochim Acta 75:1057–1071. doi:10.1016/j.gca.2010.11.009 Loka Bharathi PA, Sathe V, Chandramohan D (1990) Effect of lead, mercury and cadmium on a sulphate-reducing bacterium. Environ Pollut 67:361–374. doi:10.1016/0269-7491(90)90072-K Lopes SIC (2007) Sulfate reduction at low pH in organic wastewaters. Dissertation. Wageningen University, The Netherlands Luna-del Risco M, Orupold K, Dubourguier HC (2011) Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189:603–608. doi:10.1016/j.jhazmat.2011.02.085 Madden P, Al-Raei AM, Enright AM, Chinalia FA, de Beer D, O’Flaherty V, Collins G (2014) Effect of sulfate on low-temperature anaerobic digestion. Front Microbiol 5:376. doi:10.3389/fmicb.2014.00376 McCartney DM, Oleszkiewicz JA (1991) Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Environ Res 25:203–209. doi:10.1016/0043-1354(91)90030-T McCartney DM, Oleszkiewicz JA (1993) Competition between methanogens and sulfate reducers: effect of COD:sulfate ratio and acclimation. Water Environ Res 65:655–664. doi:10.2175/WER.65.5.8 Mori K, Hatsu M, Kimura R, Takamizawa K (2000) Effect of heavy metals on the growth of a methanogen in pure culture and coculture with a sulfate-reducing bacterium. J Biosci Bioeng 90:260–265. doi:10.1016/S1389-1723(00)80079-1 Mu H, Chen Y, Xiao N (2011) Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour Technol 102:10305–10311. doi:10.1016/j.biortech.2011.08.100 Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10:1383–1398. doi:10.1007/s13762-012-0167-y Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454. doi:10.1038/nrmicro1892 Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750. doi:10.1007/s002530051457 O’Flaherty V, Lens P, Leahy B, Colleran E (1998a) Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater. Water Res 32:815–825. doi:10.1016/S0043-1354(97)00270-4 O’Flaherty V, Mahony T, O’Kennedy R, Colleran E (1998b) Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochem 33:555–569. doi:10.1016/S0032-9592(98)00018-1 O’Flaherty V, Colohan S, Mulkerrins D, Colleran E (1999) Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor. II: microbial interactions and toxic effects. Bioresour Technol 68:109–120. doi:10.1016/S0960-8524(98)00146-1 Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228. doi:10.3390/ijms140510197 Oleszkiewicz JA, Sharma VK (1990) Stimulation and inhibition of anaerobic processes by heavy metals—a review. Biol Waste 31:45–67. doi:10.1016/0269-7483(90)90043-r Omil F, Lens P, Hulshoff Pol L, Lettinga G (1996) Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochem 31:699–710. doi:10.1016/S0032-9592(96)00015-5 Oude Elferink S, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136. doi:10.1111/j.1574-6976.1994.tb00130.x Oude Elferink SJWH, Boschker HTS, Stams AJM (1998) Identification of sulfate reducers and syntrophobacter sp. in anaerobic granular sludge by fatty-acid biomarkers and 16S rRNA probing. Geomicrobiol J 15:3–17. doi:10.1080/01490459809378058 Pankhania IP, Robinson JP (1984) Heavy metal inhibition of methanogenesis by Methanospirillum hungatei GP1. FEMS Microbiol Lett 22:277–281. doi:10.1111/j.1574-6968.1984.tb00741.x Park CM, Novak JT (2013) The effect of direct addition of iron(III) on anaerobic digestion efficiency and odor causing compounds. Water Sci Technol 68:2391–2396. doi:10.2166/wst.2013.507 Park C, Bega A, Unlu C, Chadderton RA, McKean WR, Kohl PM, Hunt JA, Keaney J, Willis JL, Duran M (2010) Acetoclastic methanogens in an anaerobic digester could be susceptible to trace metal supplementation. Water Sci Technol 62:2905–2911. doi:10.2166/wst.2010.161 Parkin GF, Speece RE, Yang CHJ, Kocher WM (1983) Response of methane fermentation systems to industrial toxicants. J Water Pollut Control Fed 55:44–53. doi:10.2307/25041796 Parkin GF, Lynch NA, Kuo W-C, Keuren ELV, Bhattacharya SK (1990) Interaction between sulfate reducers and methanogens fed acetate and propionate. J Water Pollut Control Fed 62:780–788. doi:10.2307/25043913 Plugge C, Jiang B, Bok FM, Tsai C, Stams AM (2009) Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Arch Microbiol 191:55–61. doi:10.1007/s00203-008-0428-9 Plugge CM, Zhang W, Scholten JC, Stams AJ (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:1–8. doi:10.3389/fmicb.2011.00081 Poulson SR, Colberg PJS, Drever JI (1997) Toxicity of heavy metals (Ni, Zn) to Desulfovibrio desulfuricans. Geomicrobiol J 14:41–49. doi:10.1080/01490459709378032 Reis MA, Almeida JS, Lemos PC, Carrondo MJ (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40:593–600. doi:10.1002/bit.260400506 Rinzema A, Lettinga G (1988) The effect of sulphide on the anaerobic degradation of propionate. Environ Technol Lett 9:83–88. doi:10.1080/09593338809384544 Rodriguez E, Lopes A, Fdz-Polanco M, Stams AJ, Garcia-Encina PA (2012) Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions. Appl Microbiol Biotechnol 93:2181–2191. doi:10.1007/s00253-011-3529-3 Saleh AM, Macpherson R, Miller JDA (1964) The effect of inhibitors on sulphate reducing bacteria: a compilation. J Appl Microbiol 27:281–293. doi:10.1111/j.1365-2672.1964.tb04914.x Sancey B, Trunfio G, Charles J, Minary JF, Gavoille S, Badot PM, Crini G (2011) Heavy metal removal from industrial effluents by sorption on cross-linked starch: chemical study and impact on water toxicity. J Environ Manage 92:765–772. doi:10.1016/j.jenvman.2010.10.033 Sarioglu M, Akkoyun S, Bisgin T (2010) Inhibition effects of heavy metals (copper, nickel, zinc, lead) on anaerobic sludge. Desalin Water Treat 23:55–60. doi:10.5004/dwt.2010.1950 Schmidt T, Nelles M, Scholwin F, Pröter J (2014) Trace element supplementation in the biogas production from wheat stillage—Optimization of metal dosing. Bioresour Technol 168:80–85. doi:10.1016/j.biortech.2014.02.124 Singh R, Dong H, Liu D, Zhao L, Marts AR, Farquhar E, Tierney DL, Almquist CB, Briggs BR (2015) Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Acta 148:442–456. doi:10.1016/j.gca.2014.10.012 Speece RE (1983) Anaerobic biotechnology for industrial wastewater treatment. Environ Sci Technol 17:416A–427A. doi:10.1021/es00115a001 Srivastava S, Goyal P (2010) Novel Biomaterials. Springer, Dordreht Tuo Y, Cai J, Zhu D, Zhu Y, Liu G, Hua Y, He J (2014) Effect of Zn2+ on the performances and methanogenic community shifts of UASB reactor during the treatment of swine wastewater. Water Air Soil Poll 225:1–11. doi:10.1007/s11270-014-1996-8 Utgikar VP, Chen BY, Chaudhary N, Tabak HH, Haines JR, Govind R (2001) Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50. Environ Toxicol Chem 20:2662–2669. doi:10.1002/etc.5620201202 Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48. doi:10.1002/tox.10031 van Houten BH, Roest K, Tzeneva VA, Dijkman H, Smidt H, Stams AJ (2006) Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res 40:553–560. doi:10.1016/j.watres.2005.12.004 Veeken AH, Rulkens WH (2003) Innovative developments in the selective removal and reuse of heavy metals from wastewaters. Water Sci Technol 47:9–16 Villa-Gomez DK, Papirio S, van Hullebusch ED, Farges F, Nikitenko S, Kramer H, Lens PN (2012) Influence of sulfide concentration and macronutrients on the characteristics of metal precipitates relevant to metal recovery in bioreactors. Bioresour Technol 110:26–34. doi:10.1016/j.biortech.2012.01.041 Visser A, Nozhevnikova AN, Lettinga G (1993) Sulphide inhibition of methanogenic activity at various pH levels at 55°C. J Chem Technol Biotechnol 57:9–13. doi:10.1002/jctb.280570103 Widdel F (1988) Microbiology and ecology of sulphate and sulphur reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York Wong MH, Cheung YH (1995) Gas production and digestion efficiency of sewage sludge containing elevated toxic metals. Bioresour Technol 54:261–268. doi:10.1016/0960-8524(95)00139-5 Zayed G, Winter J (2000) Inhibition of methane production from whey by heavy metals—protective effect of sulfide. Appl Microbiol Biotechnol 53:726–731. doi:10.1007/s002530000336 Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom 10:78. doi:10.1186/1471-2164-10-78 Zhang J, Dong H, Liu D, Fischer TB, Wang S, Huang L (2012) Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chem Geol 292–293:35–44. doi:10.1016/j.chemgeo.2011.11.003 Zhang J, Dong H, Liu D, Agrawal A (2013) Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Acta 106:203–215. doi:10.1016/j.gca.2012.12.031