Regularity estimates for singular parabolic measure data problems with sharp growth

Journal of Differential Equations - Tập 316 - Trang 726-761 - 2022
Jung-Tae Park1,2, Pilsoo Shin3
1Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
2School of Liberal Arts, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
3Department of Mathematics, Kyonggi University, Suwon 16227, Republic of Korea

Tài liệu tham khảo

Adams, 1996, Function spaces and potential theory, 10.1007/978-3-662-03282-4 Avelin, 2015, Variational parabolic capacity, Discrete Contin. Dyn. Syst., 35, 5665, 10.3934/dcds.2015.35.5665 Baroni, 2014, Marcinkiewicz estimates for degenerate parabolic equations with measure data, J. Funct. Anal., 267, 3397, 10.1016/j.jfa.2014.08.017 Baroni, 2017, Singular parabolic equations, measures satisfying density conditions, and gradient integrability, Nonlinear Anal., 153, 89, 10.1016/j.na.2016.10.019 Bénilan, 1995, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 22, 241 Bidaut-Véron, 2015, Stability properties for quasilinear parabolic equations with measure data, J. Eur. Math. Soc., 17, 2103, 10.4171/JEMS/552 Blanchard, 1997, Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness, Proc. R. Soc. Edinb. A, 127, 1137, 10.1017/S0308210500026986 Boccardo, 1997, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147, 237, 10.1006/jfan.1996.3040 Boccardo, 1989, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87, 149, 10.1016/0022-1236(89)90005-0 Boccardo, 1992, Nonlinear elliptic equations with right-hand side measures, Commun. Partial Differ. Equ., 17, 641 Boccardo, 1996, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 13, 539, 10.1016/s0294-1449(16)30113-5 Bögelein, 2010, Self-improving property of nonlinear higher order parabolic systems near the boundary, Nonlinear Differ. Equ. Appl., 17, 21, 10.1007/s00030-009-0038-5 Bui, 2018, Global Marcinkiewicz estimates for nonlinear parabolic equations with nonsmooth coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18, 881 Byun, 2013, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differ. Equ., 254, 4290, 10.1016/j.jde.2013.03.004 Byun, 2020, Optimal regularity estimates for general nonlinear parabolic equations, Manuscr. Math., 162, 67, 10.1007/s00229-019-01127-8 Byun, 2021, Global regularity for degenerate/singular parabolic equations involving measure data, Calc. Var. Partial Differ. Equ., 60, 10.1007/s00526-020-01906-2 Byun, 2004, Elliptic equations with BMO coefficients in Reifenberg domains, Commun. Pure Appl. Math., 57, 1283, 10.1002/cpa.20037 Caffarelli, 1998, On W1,p estimates for elliptic equations in divergence form, Commun. Pure Appl. Math., 51, 1, 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G Casas, 1986, Control of an elliptic problem with pointwise state constraints, SIAM J. Control Optim., 24, 1309, 10.1137/0324078 Casas, 1993, Boundary control of semilinear elliptic equations with pointwise state constraints, SIAM J. Control Optim., 31, 993, 10.1137/0331044 Casas, 2008, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints, SIAM J. Optim., 19, 616, 10.1137/07068240X Dal Maso, 1999, Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 28, 741 Dall'Aglio, 1996, Approximated solutions of equations with L1 data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4), 170, 207, 10.1007/BF01758989 DiBenedetto, 1993, Degenerate Parabolic Equations, 10.1007/978-1-4612-0895-2 DiBenedetto, 1985, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357, 1 DiBenedetto, 1985, Addendum to: “Hölder estimates for nonlinear degenerate parabolic systems”, J. Reine Angew. Math., 363, 217 DiPerna, 1989, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math. (2), 130, 321, 10.2307/1971423 DiPerna, 1989, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511, 10.1007/BF01393835 Dong Droniou, 2003, Parabolic capacity and soft measures for nonlinear equations, Potential Anal., 19, 99, 10.1023/A:1023248531928 Duzaar, 2010, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259, 2961, 10.1016/j.jfa.2010.08.006 Duzaar, 2011, Gradient estimates via non-linear potentials, Am. J. Math., 133, 1093, 10.1353/ajm.2011.0023 Fukushima, 1991, On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures, Osaka J. Math., 28, 517 Giusti, 2003 Hamburger, 1992, Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math., 431, 7 Kinnunen, 2013, Nonlinear parabolic capacity and polar sets of superparabolic functions, Math. Ann., 355, 1349, 10.1007/s00208-012-0825-x Kinnunen, 2000, Higher integrability for parabolic systems of p-Laplacian type, Duke Math. J., 102, 253, 10.1215/S0012-7094-00-10223-2 Kinnunen, 2010, An existence result for superparabolic functions, J. Funct. Anal., 258, 713, 10.1016/j.jfa.2009.08.009 Kinnunen, 2013, Local approximation of superharmonic and superparabolic functions in nonlinear potential theory, J. Fixed Point Theory Appl., 13, 291, 10.1007/s11784-013-0108-5 Kinnunen, 2003, Regularity of the fractional maximal function, Bull. Lond. Math. Soc., 35, 529, 10.1112/S0024609303002017 Klimsiak, 2019, On the structure of diffuse measures for parabolic capacities, C. R. Math. Acad. Sci. Paris, 357, 443, 10.1016/j.crma.2019.04.012 Kuusi, 2013, Gradient regularity for nonlinear parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12, 755 Kuusi, 2014, Riesz potentials and nonlinear parabolic equations, Arch. Ration. Mech. Anal., 212, 727, 10.1007/s00205-013-0695-8 Kuusi, 2014, The Wolff gradient bound for degenerate parabolic equations, J. Eur. Math. Soc., 16, 835, 10.4171/JEMS/449 Kuusi, 2018, Vectorial nonlinear potential theory, J. Eur. Math. Soc., 20, 929, 10.4171/JEMS/780 Lemenant, 2014, On the extension property of Reifenberg-flat domains, Ann. Acad. Sci. Fenn., Math., 39, 51, 10.5186/aasfm.2014.3907 LeVeque, 1994, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019, 10.1137/0731054 Lieberman, 1993, Boundary and initial regularity for solutions of degenerate parabolic equations, Nonlinear Anal., 20, 551, 10.1016/0362-546X(93)90038-T Meyer, 2011, Uniqueness criteria for the adjoint equation in state-constrained elliptic optimal control, Numer. Funct. Anal. Optim., 32, 983, 10.1080/01630563.2011.587074 Mingione, 2007, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6, 195 Mingione, 2010, Gradient estimates below the duality exponent, Math. Ann., 346, 571, 10.1007/s00208-009-0411-z Nguyen Nguyen, 2019, Good-λ and Muckenhoupt-Wheeden type bounds in quasilinear measure datum problems, with applications, Math. Ann., 374, 67, 10.1007/s00208-018-1744-2 Nguyen, 2020, Pointwise gradient estimates for a class of singular quasilinear equations with measure data, J. Funct. Anal., 278, 10.1016/j.jfa.2019.108391 Nguyen Osher, 2003, Level Set Methods and Dynamic Implicit Surfaces, vol. 153 Peskin, 1977, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220, 10.1016/0021-9991(77)90100-0 Peskin, 1989, A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81, 372, 10.1016/0021-9991(89)90213-1 Petitta, 2008, Renormalized solutions of nonlinear parabolic equations with general measure data, Ann. Mat. Pura Appl. (4), 187, 563, 10.1007/s10231-007-0057-y Petitta, 2011, Diffuse measures and nonlinear parabolic equations, J. Evol. Equ., 11, 861, 10.1007/s00028-011-0115-1 Petitta, 2015, On the notion of renormalized solution to nonlinear parabolic equations with general measure data, J. Elliptic Parabolic Equ., 1, 201, 10.1007/BF03377376 Phuc, 2014, Global integral gradient bounds for quasilinear equations below or near the natural exponent, Ark. Mat., 52, 329, 10.1007/s11512-012-0177-5 Phuc, 2014, Morrey global bounds and quasilinear Riccati type equations below the natural exponent, J. Math. Pures Appl. (9), 102, 99, 10.1016/j.matpur.2013.11.003 Phuc, 2014, Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations, Adv. Math., 250, 387, 10.1016/j.aim.2013.09.022 Pierre, 1983, Parabolic capacity and Sobolev spaces, SIAM J. Math. Anal., 14, 522, 10.1137/0514044 Prignet, 1997, Existence and uniqueness of “entropy” solutions of parabolic problems with L1 data, Nonlinear Anal., 28, 1943, 10.1016/S0362-546X(96)00030-2 Scheven, 2012, Elliptic obstacle problems with measure data: potentials and low order regularity, Publ. Mat., 56, 327, 10.5565/PUBLMAT_56212_04 Scheven, 2012, Gradient potential estimates in non-linear elliptic obstacle problems with measure data, J. Funct. Anal., 262, 2777, 10.1016/j.jfa.2012.01.003 Stein, 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, vol. 43 Sussman, 1994, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146, 10.1006/jcph.1994.1155 Toro, 1997, Doubling and flatness: geometry of measures, Not. Am. Math. Soc., 44, 1087 Urbano, 2008, The method of intrinsic scaling, vol. 1930 Wang, 2003, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. Engl. Ser., 19, 381, 10.1007/s10114-003-0264-4