Asymptotic Inferences in a Doubly-Semi-Parametric Linear Longitudinal Mixed Model

Sankhya A - Tập 85 - Trang 214-247 - 2021
Brajendra C. Sutradhar1, R. Prabhakar Rao2
1Memorial University, St. John's, Canada
2Sri Sathya Sai Institute of Higher Learning, Anantapur, India

Tóm tắt

Warriyar and Sutradhar (Brazilian J. Probab. Stat., 28, 561–586, 2014) studied a semi-parametric linear model in a longitudinal setup with Gaussian errors, where the main regression parameters were estimated using an efficient GQL (generalized quasi-likelihood) estimation approach, and the efficiency properties of the estimators were examined through a simulation study. In this paper we provide a generalization of their linear semi-parametric regression model to a wider setup where the error distributions are relaxed and errors are assumed to follow a four-moments based semi-parametric structure leading to a doubly semi-parametric model. On top of regression parameters and nonparametric function estimation, this doubly semi-parametric nature of the model makes the four-moments based variance and correlation parameters estimation quite challenging. We resolve this computational issue analytically by developing exact formulas for all necessary higher order moments. As the longitudinal studies involve large number of independent individuals providing repeated responses, we study the asymptotic properties of the estimators and make sure that the estimators including the estimator of nonparametric function are consistent.

Tài liệu tham khảo

Altman, N.S. (1990). Kernel smoothing of data with correlated errors. J. Am. Stat. Assoc. 85, 749–758. Amemiya, T. (1985). Advanced econometrics. Harvard University Press, Cambridge. Bishop, Y.M.M., Fienberg, SE. and Holland, P.W. (1975). Discrete Multivariate Analysis : Theory and Practice. Springer, New York. Bun, M.J.G. and Carree, M.A. (2005). Bias-corrected estimation in dynamic panel data models. J. Business Econo. Statist. 23, 200–210. Chen, J., Li, D., Liang, H. and Wang, S. (2015). Semiparametric GEE analysis in partial linear single-index models for longitudinal data. Ann. Stat. 43, 1682–1715. Fleishman, A.I. (1978). A method of simulating non-normal distributions. Psychometrika 43, 521–532. Hsiao, C. (2003). Analysis of panel data. University Press, Cambridge. McDonald, D.R. (2005). The local limit theorem: a historical perspective. J. Iranian Stat. Soc. 4, 73–86. Pagan, A. and Ullah, A. (1999). Nonparametric econometrics. Cambridge University Press, Cambridge. Rao, R.P., Sutradhar, B.C. and Pandit, V.N. (2012). GMM Versus GQL inferences n linear dynamic panel data models. Brazilian J. Probab. Stat.26, 167–177. Sneddon, G. and Sutradhar, B.C. (2004). On semiparametric familial-longitudinal models. Stat. Probab. Lett. 69, 369–379. Sutradhar, B.C. (2003). An review on regression models for discrete longitudinal responses. Stat. Sci. 18, 377–393. Sutradhar, B.C. (2011). Dynamic mixed models for familial longitudinal data. Springer, New York. Sutradhar, B.C., Rao, R.P. and Pandit, V.N. (2008). Generalized method of moments versus generalized quasi-likelihood inferences in binary panel data models. Sankhya B 70, 34–62. Wang, N., Carroll, R.J. and Lin, X. (2005). Efficient semi-parametric marginal estimation for longitudinal/clustered data. J. Amer. Stat. Assoc. 100, 147–157. Warriyar, K.V.V. and Sutradhar, B.C. (2014). Estimation with improved efficiency in semi-parametric linear longitudinal models. Brazilian J. Probab. Stat. 28, 561–586. Wedderburn, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61, 439–447. Zeger, S.L. and Diggle, P.J. (1994). Semi-parametric Models for Longitudinal Data With Application to CD4 Cell Numbers in HIV Seroconverters. Biometrics50, 689–699.