Remote Inspection of Internal Delamination in Wind Turbine Blades using Continuous Line Laser Scanning Thermography
International Journal of Precision Engineering and Manufacturing-Green Technology - Tập 7 - Trang 699-712 - 2020
Tóm tắt
This study proposes a continuous line laser scanning thermography (CLLST) system for remote inspection of internal delamination in wind turbine blades. The CLLST system offers the following advantages: (1) remote delamination inspection can be achieved by mechanically scanning a line laser beam and simultaneously capturing the corresponding thermal waves in nondestructive and noncontact manners; (2) internal delamination and surface damages can be classified by analyzing laser-induced thermal wave propagating patterns; (3) instantaneous delamination detection and quantification can be accomplished without using baseline data which is previously collected from the pristine condition of a target blade. To examine the feasibility of the CLLST system, laboratory and full-scale tests were performed using a carbon fiber reinforced polymer (CFRP) plate, a 10 kW glass fiber reinforced polymer (GFRP) wind turbine blade, and a 3 MW GFRP wind turbine blade. The test results demonstrated that the 10 mm diameter internal delamination located 1 mm underneath the blade surface was successfully detected even 10 m far from the target blade with a laser scanning speed of 2 mm/s.
Tài liệu tham khảo
Gay, D. (2014). Composite materials: design and applications. Boca Raton: CRC Press. ISBN: 9780429101038.
Campbell, F. C. (2010). Structural composite materials. Materials Park: ASM International. ISBN: 9781615030378.
Aslan, Z., & Daricik, F. (2016). Effects of multiple delaminations on the compressive, tensile, flexural, and buckling behaviour of E-glass/epoxy composites. Composites Part B: Engineering,100, 186–196.
Zabala, H., Aretxabaleta, L., Castillo, G., Urien, J., & Aurrekoetxea, J. (2014). Impact velocity effect on the delamination of woven carbon–epoxy plates subjected to low-velocity equienergetic impact loads. Composites Science and Technology,94, 48–53.
Tao, C., Qiu, J., Yao, W., & Ji, H. (2016). A novel method for fatigue delamination simulation in composite laminates. Composites Science and Technology,128, 104–115.
Pagano, N. J. (2012). Interlaminar response of composite materials (Vol. 5). North Holland: Elsevier. ISBN: 9780444597205.
Li, D., Ho, S.-C. M., Song, G., Ren, L., & Li, H. (2015). A review of damage detection methods for wind turbine blades. Smart Materials and Structures,24(3), 033001.
Liu, W., Tang, B., Han, J., Lu, X., Hu, N., & He, Z. (2015). The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review. Renewable and Sustainable Energy Reviews,44, 466–472.
Roh, H. D., Lee, H., & Park, Y.-B. (2016). Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement. International Journal of Precision Engineering and Manufacturing-Green Technology,3(3), 311–321.
Ryu, C.-H., Park, S.-H., Kim, D.-H., Jhang, K.-Y., & Kim, H.-S. (2016). Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy. Composite Structures,156, 338–347.
Wang, J., Zhang, J., Chang, T., & Cui, H.-L. (2019). A Comparative Study of Non-destructive Evaluation of Glass Fiber Reinforced Polymer Composites Using Terahertz, X-ray, and Ultrasound Imaging. International Journal of Precision Engineering and Manufacturing,20(6), 963–972.
Liu, Z., Yu, H., Fan, J., Hu, Y., He, C., & Wu, B. (2015). Baseline-free delamination inspection in composite plates by synthesizing non-contact air-coupled Lamb wave scan method and virtual time reversal algorithm. Smart Materials and Structures,24(4), 045014.
Karabutov, A., & Podymova, N. (2014). Quantitative analysis of the influence of voids and delaminations on acoustic attenuation in CFRP composites by the laser-ultrasonic spectroscopy method. Composites Part B: Engineering,56, 238–244.
Park, B., An, Y.-K., & Sohn, H. (2014). Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Composites science and Technology,100, 10–18.
Park, B., Sohn, H., Malinowski, P., & Ostachowicz, W. (2017). Delamination localization in wind turbine blades based on adaptive time-of-flight analysis of noncontact laser ultrasonic signals. Nondestructive Testing and Evaluation,32(1), 1–20.
Sohn, H., Dutta, D., Yang, J., DeSimio, M., Olson, S., & Swenson, E. (2011). Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Materials and Structures,20(4), 045017.
An, Y.-K., Park, B., & Sohn, H. (2013). Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate. Smart Materials and Structures,22(2), 025022.
Hsu, D. K., Lee, K.-S., Park, J.-W., Woo, Y.-D., & Im, K.-H. (2012). NDE inspection of terahertz waves in wind turbine composites. International Journal of Precision Engineering and Manufacturing,13(7), 1183–1189.
Park, J.-W., Im, K.-H., Yang, I.-Y., Kim, S.-K., Kang, S.-J., Cho, Y.-T., et al. (2014). Terahertz radiation NDE of composite materials for wind turbine applications. International Journal of Precision Engineering and Manufacturing,15(6), 1247–1254.
Kim, D.-H., Ryu, C.-H., Park, S.-H., & Kim, H.-S. (2017). Nondestructive evaluation of hidden damages in glass fiber reinforced plastic by using the terahertz spectroscopy. International Journal of Precision Engineering and Manufacturing-Green Technology,4(2), 211–219.
Schilling, P. J., Karedla, B. R., Tatiparthi, A. K., Verges, M. A., & Herrington, P. D. (2005). X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Composites Science and Technology,65(14), 2071–2078.
Tan, K. T., Watanabe, N., & Iwahori, Y. (2011). X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Composites Part B: Engineering,42(4), 874–884.
Maldague, X. P. (2002). Introduction to NDT by active infrared thermography. Materials Evaluation,60(9), 1060–1073.
Lisle, T., Bouvet, C., Hongkarnjanakul, N., Pastor, M.-L., Rivallant, S., & Margueres, P. (2015). Measure of fracture toughness of compressive fiber failure in composite structures using infrared thermography. Composites Science and Technology,112, 22–33.
Foudazi, A., Edwards, C. A., Ghasr, M. T., & Donnell, K. M. (2016). Active microwave thermography for defect detection of CFRP-strengthened cement-based materials. IEEE Transactions on Instrumentation and Measurement,65(11), 2612–2620.
He, Y., Tian, G., Pan, M., & Chen, D. (2014). Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography. Composite Structures,109, 1–7.
Tang, Q., Dai, J., Bu, C., Qi, L., & Li, D. (2016). Experimental study on debonding defects detection in thermal barrier coating structure using infrared lock-in thermographic technique. Applied Thermal Engineering,107, 463–468.
Doroshtnasir, M., Worzewski, T., Krankenhagen, R., & Röllig, M. (2016). On-site inspection of potential defects in wind turbine rotor blades with thermography. Wind Energy,19(8), 1407–1422.
Ranjit, S., Kang, K., & Kim, W. (2015). Investigation of lock-in infrared thermography for evaluation of subsurface defects size and depth. International Journal of Precision Engineering and Manufacturing,16(11), 2255–2264.
Kim, G., Hong, S., Kim, G. H., & Jhang, K.-Y. (2012). Evaluation of subsurface defects in fiber glass composite plate using lock-in technique. International Journal of Precision Engineering and Manufacturing,13(4), 465–470.
Moran, J., & Rajic, N. (2019). Remote line scan thermography for the rapid inspection of composite impact damage. Composite structures,208, 442–453.
Li, T., Almond, D. P., & Rees, D. A. S. (2011). Crack imaging by scanning pulsed laser spot thermography. NDT & E International,44(2), 216–225.
Li, T., Almond, D. P., & Rees, D. A. S. (2011). Crack imaging by scanning laser-line thermography and laser-spot thermography. Measurement Science and Technology,22(3), 035701.
An, Y.-K., Yang, J., Hwang, S., & Sohn, H. (2015). Line laser lock-in thermography for instantaneous imaging of cracks in semiconductor chips. Optics and Lasers in Engineering,73, 128–136.
Peeters, J., Ibarra-Castanedo, C., Khodayar, F., Mokhtari, Y., Sfarra, S., Zhang, H., et al. (2018). Optimised dynamic line scan thermographic detection of CFRP inserts using FE updating and POD analysis. Ndt & E International,93, 141–149.
Honner, M., Honnerova, P., Kučera, M., & Martan, J. (2016). Laser scanning heating method for high-temperature spectral emissivity analyses. Applied Thermal Engineering,94, 76–81.
Kreith, F., Manglik, R. M., & Bohn, M. S. (2012). Principles of heat transfer. Stamford: Cengage learning. ISBN: 9781439061862.
https://www.skchemicals.com/business/sf_pop.do?no=1. Accessed 1 October 2019.
Lee, H. G., Kang, M. G., & Park, J. (2015). Fatigue failure of a composite wind turbine blade at its root end. Composite Structures,133, 878–885.
Pascoe, J., Alderliesten, R., & Benedictus, R. (2013). Methods for the prediction of fatigue delamination growth in composites and adhesive bonds—a critical review. Engineering Fracture Mechanics,112, 72–96.