Activation of classical estrogen receptor subtypes reduces tight junction disruption of brain endothelial cells under ischemia/reperfusion injury

Free Radical Biology and Medicine - Tập 92 - Trang 78-89 - 2016
Jin A. Shin1,2, Joo Chun Yoon2,3, Minsuk Kim1, Eun-Mi Park1,2
1Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 158-710, Republic of Korea
2Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
3Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea

Tài liệu tham khảo

Abbott, 2010, Structure and function of the blood–brain barrier, Neurobiol. Dis., 37, 13, 10.1016/j.nbd.2009.07.030 Rosenberg, 2012, Neurological diseases in relation to the blood–brain barrier, J. Cereb. Blood Flow Metab., 32, 1139, 10.1038/jcbfm.2011.197 Sandoval, 2008, Blood–brain barrier tight junction permeability and ischemic stroke, Neurobiol. Dis., 32, 200, 10.1016/j.nbd.2008.08.005 Shin, 2015, Extracellular signal-regulated kinase1/2-dependent changes in tight junctions after ischemic preconditioning contributes to tolerance induction after ischemic stroke, Brain Struct. Funct., 220, 13, 10.1007/s00429-013-0632-5 Shin, 2013, Activation of estrogen receptor beta reduces blood–brain barrier breakdown following ischemic injury, Neuroscience, 235, 165, 10.1016/j.neuroscience.2013.01.031 Yang, 2007, Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat, J. Cereb. Blood Flow Metab., 27, 697, 10.1038/sj.jcbfm.9600375 Jiao, 2011, Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult, J. Mol. Neurosci., 44, 130, 10.1007/s12031-011-9496-4 Guo, 2010, Estrogen-receptor-mediated protection of cerebral endothelial cell viability and mitochondrial function after ischemic insult in vitro, J. Cereb. Blood Flow Metab., 30, 545, 10.1038/jcbfm.2009.226 Fischer, 2005, H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway, Eur. J. Cell Biol., 84, 687, 10.1016/j.ejcb.2005.03.002 Gibson, 2006, Estrogens and experimental ischemic stroke: a systematic review, J. Cereb. Blood Flow Metab., 26, 1103, 10.1038/sj.jcbfm.9600270 Chi, 2006, Effects of 17beta-estradiol on blood–brain barrier disruption during focal cerebral ischemia in younger and older rats, Horm. Metab. Res., 38, 377, 10.1055/s-2006-944521 Liu, 2005, 17beta-Estradiol attenuates blood–brain barrier disruption induced by cerebral ischemia–reperfusion injury in female rats, Brain Res., 1060, 55, 10.1016/j.brainres.2005.08.048 Kang, 2006, Effect of estrogen on the expression of occludin in ovariectomized mouse brain, Neurosci. Lett., 402, 30, 10.1016/j.neulet.2006.03.052 Burek, 2010, Claudin-5 as a novel estrogen target in vascular endothelium, Arterioscler. Thromb. Vasc. Biol., 30, 298, 10.1161/ATVBAHA.109.197582 Sandoval, 2011, Age and 17beta-estradiol effects on blood–brain barrier tight junction and estrogen receptor proteins in ovariectomized rats, Microvasc. Res., 81, 198, 10.1016/j.mvr.2010.12.007 Burek, 2014, Mechanisms of transcriptional activation of the mouse claudin-5 promoter by estrogen receptor alpha and beta, Mol. Cell. Endocrinol., 392, 144, 10.1016/j.mce.2014.05.003 Brown, 2007, Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells, Brain Res., 1130, 17, 10.1016/j.brainres.2006.10.083 Cornil, 2006, Functional significance of the rapid regulation of brain estrogen action: where do the estrogens come from?, Brain Res., 1126, 2, 10.1016/j.brainres.2006.07.098 Choi, 2008, Effects of estrogen on temporal expressions of IL-1beta and IL-1ra in rat organotypic hippocampal slices exposed to oxygen–glucose deprivation, Neurosci. Lett., 438, 233, 10.1016/j.neulet.2008.04.026 Kalyanaraman, 2012, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations, Free Radic. Biol. Med., 52, 1, 10.1016/j.freeradbiomed.2011.09.030 Andriopoulou, 1999, Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions, Arterioscler. Thromb. Vasc. Biol., 19, 2286, 10.1161/01.ATV.19.10.2286 Shin, 2015, Estrogen receptor-mediated resveratrol actions on blood–brain barrier of ovariectomized mice, Neurobiol. Aging, 36, 993, 10.1016/j.neurobiolaging.2014.09.024 Stirone, 2005, Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels, Mol. Pharmacol., 68, 959, 10.1124/mol.105.014662 Lahm, 2012, 17beta-Estradiol attenuates hypoxic pulmonary hypertension via estrogen receptor-mediated effects, Am. J. Respir. Crit. Care Med., 185, 965, 10.1164/rccm.201107-1293OC Wei, 2001, Signaling pathway for nitric oxide generation with simulated ischemia in flow-adapted endothelial cells, Am. J. Physiol. Heart Circ. Physiol., 281, H2226, 10.1152/ajpheart.2001.281.5.H2226 Namura, 2001, Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia, Proc. Natl. Acad. Sci. USA, 98, 11569, 10.1073/pnas.181213498 Razmara, 2008, Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells, J. Pharmacol. Exp. Ther., 325, 782, 10.1124/jpet.107.134072 Mak, 2010, ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading, Cancer Cell, 17, 319, 10.1016/j.ccr.2010.02.030 Park, 2014, Overexpression of ERbeta is sufficient to inhibit hypoxia-inducible factor-1 transactivation, Biochem. Biophys. Res. Commun., 450, 261, 10.1016/j.bbrc.2014.05.107 Minet, 2000, ERK activation upon hypoxia: involvement in HIF-1 activation, FEBS Lett., 468, 53, 10.1016/S0014-5793(00)01181-9 Li, 2008, The requirement of extracellular signal-related protein kinase pathway in the activation of hypoxia inducible factor 1 alpha in the developing rat brain after hypoxia-ischemia, Acta Neuropathol., 115, 297, 10.1007/s00401-008-0339-5 Narasimhan, 2009, VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions, Stroke, 40, 1467, 10.1161/STROKEAHA.108.534644 Kim, 2009, Decursin inhibits VEGF-mediated inner blood–retinal barrier breakdown by suppression of VEGFR-2 activation, J. Cereb. Blood Flow Metab., 29, 1559, 10.1038/jcbfm.2009.78 Argaw, 2009, VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown, Proc. Natl. Acad. Sci. USA, 106, 1977, 10.1073/pnas.0808698106 Naderi, 2015, Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors alpha and beta following traumatic brain injury, Iran. J. Basic Med. Sci., 18, 138 Asl, 2013, Contribution of estrogen receptors alpha and beta in the brain response to traumatic brain injury, J. Neurosurg., 119, 353, 10.3171/2013.4.JNS121636 Carswell, 2004, Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia, Am. J. Physiol. Heart Circ. Physiol., 287, H1501, 10.1152/ajpheart.00227.2004 Miller, 2005, Estrogen can act via estrogen receptor alpha and beta to protect hippocampal neurons against global ischemia-induced cell death, Endocrinology, 146, 3070, 10.1210/en.2004-1515 Shimada, 2011, Activation of estrogen receptor-alpha and of angiotensin-converting enzyme 2 suppresses ischemic brain damage in oophorectomized rats, Hypertension, 57, 1161, 10.1161/HYPERTENSIONAHA.110.167650 de Rivero Vaccari, 2016, Estrogen receptor beta signaling alters cellular inflammasomes activity after global cerebral ischemia in reproductively senescence female rats, J. Neurochem., 136, 492, 10.1111/jnc.13404 Nilsson, 2011, Development of subtype-selective oestrogen receptor-based therapeutics, Nat. Rev. Drug Discov., 10, 778, 10.1038/nrd3551 McCaffrey, 2009, Occludin oligomeric assemblies at tight junctions of the blood–brain barrier are altered by hypoxia and reoxygenation stress, J. Neurochem., 110, 58, 10.1111/j.1471-4159.2009.06113.x Klinge, 2008, Resveratrol stimulates nitric oxide production by increasing estrogen receptor alpha-Src-caveolin-1 interaction and phosphorylation in human umbilical vein endothelial cells, FASEB J., 22, 2185, 10.1096/fj.07-103366 Sa-Pereira, 2012, Neurovascular unit: a focus on pericytes, Mol. Neurobiol., 45, 327, 10.1007/s12035-012-8244-2 Schreihofer, 2013, Estrogen receptors and ischemic neuroprotection: who, what, where, and when?, Brain Res., 1514, 107, 10.1016/j.brainres.2013.02.051