Rotating detonation in a ramjet engine three-dimensional modeling

Aerospace Science and Technology - Tập 81 - Trang 213-224 - 2018
N.N. Smirnov1,2, V.F. Nikitin1,2, L.I. Stamov1,2, E.V. Mikhalchenko1,2, V.V. Tyurenkova1,2
1Federal Science Center «Scientific Research Institute for System Analysis of Russian Academy of Sciences», 36-1 Nakhimovskiy pr., Moscow, 117218, Russia
2Moscow Lomonosov State University, Leninskie Gory 1, Moscow, 119992, Russia

Tài liệu tham khảo

Braun, 2013, Airbreathing rotating detonation wave engine cycle analysis, Aerosp. Sci. Technol., 27, 201, 10.1016/j.ast.2012.08.010 Smirnov, 2014, Detonation engine fed by acetylene-oxygen mixture, Acta Astronaut., 104, 134, 10.1016/j.actaastro.2014.07.019 Norden, 2011, Thermodynamic modeling of a rotating detonation engine Philippov, 2012, Fluid mechanics of pulse detonation thrusters, Acta Astronaut., 76, 115, 10.1016/j.actaastro.2012.02.007 Nikitin, 2009, Pulse detonation engines: technical approaches, Acta Astronaut., 64, 281, 10.1016/j.actaastro.2008.08.002 Tan, 2018, Gas kinetic scheme for turbulence simulation, Aerosp. Sci. Technol., 78, 214, 10.1016/j.ast.2018.04.022 Kim, 2018, Modeling of incomplete combustion in a scramjet engine, Aerosp. Sci. Technol., 78, 397, 10.1016/j.ast.2018.04.044 Lin, 2017, Study on the effects of ionization seeds on pulse detonation, Aerosp. Sci. Technol., 71, 128, 10.1016/j.ast.2017.09.015 Wei, 2015, Experimental study on propagation mode of H2/air continuously rotating detonation wave, Int. J. Hydrog. Energy, 40, 1980, 10.1016/j.ijhydene.2014.11.119 Voitsekhovskii, 1959, Stationary detonation, Dokl. Akad. Nauk, 129, 1254 Nicholls, 1966, Feasibility studies of a rotating detonation wave rocket motor, J. Spacecr. Rockets, 3, 893, 10.2514/3.28557 Bykovskii, 1997, Continuous detonation combustion of fuel–air mixtures, Combust. Explos. Shock Waves, 33, 344, 10.1007/BF02671875 Bykovskii, 2003, Continuous detonation of a subsonic flow of a propellant, Combust. Explos. Shock Waves, 39, 323, 10.1023/A:1023800521344 Bykovskii, 2006, Continuous spin detonations, J. Propuls. Power, 22, 1204, 10.2514/1.17656 Bykovskii, 2004, Continuous spin detonation in ducted annular combustors, 174 Kindracki, 2011, Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures, Shock Waves, 21, 75, 10.1007/s00193-011-0298-y Zhdan, 2007, Mathematical modeling of a rotating detonation wave in a hydrogen–oxygen mixture, Combust. Explos. Shock Waves, 43, 449, 10.1007/s10573-007-0061-y Shijie, 2012, Experimental realization of H2/air continuous rotating detonation in a cylindrical combustor, Combust. Sci. Technol., 184, 1302, 10.1080/00102202.2012.682669 Shijie, 2015, Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary, Combust. Sci. Technol., 187, 1790, 10.1080/00102202.2015.1019620 Jian, 2017, Effects of injection nozzle exit width on rotating detonation engine, Acta Astronaut., 140, 388, 10.1016/j.actaastro.2017.09.008 Jianping, 2010, Rotating detonation engine injection velocity limit and nozzle effects on its propulsion performance, Comput. Fluid Dyn., 789 Yetao, 2010, Continuous detonation engine and effects of different types of nozzle on its propulsion performance, Chin. J. Aeronaut., 23, 647, 10.1016/S1000-9361(09)60266-1 Jie, 2013, Influence of axial length on rotating detonation engine, J. Aerosp. Power, 28, 844 Jian, 2016, Influence of chamber length on rotating detonation engine performance, J. Aerosp. Power, 31, 2080 Tsuboi, 2017, Front cellular structure and thrust performance on hydrogen–oxygen rotating detonation engine, J. Propuls. Power, 33, 100, 10.2514/1.B36095 Nordeen, 2016, Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine, Shock Waves, 26, 417, 10.1007/s00193-015-0570-7 Fievisohn, 2017, Steady-state analysis of rotating detonation engine flowfields with the method of characteristics, J. Propuls. Power, 33, 89, 10.2514/1.B36103 Fotia, 2016, Experimental study of the performance of a rotating detonation engine with nozzle, J. Propuls. Power, 32, 674, 10.2514/1.B35913 Levin, 2018, Rotating detonation wave in an annular gap, Proc. Steklov Inst. Math., 300, 135, 10.1134/S0081543818010108 Dubrovskii, 2015, Three-dimensional numerical simulation of the operation process in a continuous detonation combustor with separate feeding of hydrogen and air, Russ. J. Phys. Chem. B, 9, 104, 10.1134/S1990793115010157 Yao, 2017, Numerical study of rotating detonation engine with an array of injection holes, Shock Waves, 27, 467, 10.1007/s00193-016-0692-6 Kindracki, 2015, Experimental research on rotating detonation in liquid fuel–gaseous air mixtures, Aerosp. Sci. Technol., 43, 445, 10.1016/j.ast.2015.04.006 Zhang, 2017, An experimental study on the detonability of gaseous hydrocarbon fuel–oxygen mixtures in narrow channels, Aerosp. Sci. Technol., 69, 193, 10.1016/j.ast.2017.06.032 Zhang, 2016, Numerical study on initiation of oblique detonations in hydrogen–air mixtures with various equivalence ratios, Aerosp. Sci. Technol., 49, 130, 10.1016/j.ast.2015.11.035 Fang, 2017, Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen–air mixtures, Aerosp. Sci. Technol., 71, 256, 10.1016/j.ast.2017.09.027 Zhu, 2018, Intermittent back-flash phenomenon of supersonic combustion in the staged-strut scramjet engine, Aerosp. Sci. Technol., 79, 70, 10.1016/j.ast.2018.05.037 CHEMKIN, A software package for the analysis of gas-phase chemical and plasma kinetics. CHE-036-1. Chemkin collection release 3.6. Reaction Design, September 2000. Marinov, 1998, An experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO–NO2 conversion in a flow reactor, 389 Kee, 1980 Wilcox, 1993 Transport, A software package for the evaluation of gas-phase, multicomponent transport properties, TRA-036-1, CHEMKIN collection, release, 2000. Connaire, 2004, A comprehensive modeling study of hydrogen oxidation, Int. J. Chem. Kinet., 36, 603, 10.1002/kin.20036 Maas, 1992, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame, 88, 239, 10.1016/0010-2180(92)90034-M van Leer, 1979, Towards the ultimate conservative difference scheme. A second order sequel to Godunov's method, J. Comput. Phys., 32, 101, 10.1016/0021-9991(79)90145-1 Liou, 1996, A sequel to AUSM: AUSM+, J. Comput. Phys., 129, 364, 10.1006/jcph.1996.0256 Fletcher, 2006