Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats

Oxford University Press (OUP) - Tập 36 - Trang 599-604 - 2009
Xavier Moppert1, Tinaïg Le Costaouec2, Gérard Raguenes2, Anthony Courtois2, Christelle Simon-Colin2, Philippe Crassous3, Bernard Costa1, Jean Guezennec2
1CAIRAP Sarl, Centre d’Analyses Industrielles et de Recherche Appliquée pour le Pacifique, Papeete, Tahiti, French Polynesia
2Institut Français de Recherche pour l’Exploitation de la Mer, BIOMAR/BMM, Centre de Brest, Plouzané, France
3Institut Français de Recherche pour l’Exploitation de la Mer, EEP/LEP, Centre de Brest, Plouzané, France

Tóm tắt

A bacterium isolated from microbial mats located on a polynesian atoll produced a high molecular weight (3,000 kDa) and highly sulphated exopolysaccharide. Previous studies showed that the chemical structure of this EPS consisted of neutral sugars, uronic acids, and high proportions of acetate and sulphate groups. The copper- and iron-binding ability of the purified pre-treated native EPS was investigated. Results showed that this EPS had a very high affinity for both copper (9.84 mmol g−1 EPS) and ferrous iron (6.9 mmol g−1 EPS). Amazingly, this EPS did not show any affinity for either ferric ions or selenium salts. This finding is one of the first steps in assessing the biotechnological potential of this polysaccharide.

Tài liệu tham khảo

Angyal SJ (1989) In: Tipson RS, Horton D (Eds.) Advances in carbohydrate chemistry and biochemistry, vol. 47, Academic Press, Washington, DC, pp 1–43 Bar-Or Y, Shilo M (1987) Characterization of macromolecular flocculents produced by Phormidium sp. strain J1 and by Anabaenopsis circularis PCC 6720. Appl Environ Microbiol 53:2226–2230 Benedetti LM, Topp E, Stella VJ (1989) A novel drug delivery system: microspheres of hyaluronic acid derivatives. In: Crescenzi V, Dea ICM, Paoletti S, Stivala S, Sutherland IW (eds) Biomedical and biotechnological advances in industrial polysaccharides. Gordon and Breach, New York, pp 27–33 Brierley CL, Brierley JA (1993) Immobilization of biomass for industrial application of biosorption. In Torma AE, Apel ML, Brierley CL (eds), vol 2 Biohydrometallurgical Technologies Metal and Materials Society, Warrendale, pp 35–44 Colliec-Jouault S, Chevolot L, Helley D, Ratiskol J, Bros A, Sinquin C, Roger O, Fisher AM (2001) Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochim Biophys Acta 1528:141–151 Defarge C, Trichet J, Coute A (1994) On the appearance of cyanobacterial calcification in modern stromatolites. Sediment Geol 94:1–19. doi:10.1016/0037-0738(94)90144-9 Defarge C, Trichet J, Maurin A, Hucher M (1994) Kopara in Polynesian atolls: early stages of formation of calcareous stromatolites. Sediment Geol 89:9–23. doi:10.1016/0037-0738(94)90080-9 Ferri T, Sangiorgio P (1999) Voltammetric study of the interaction between Se(IV) and dissolved organic matter in environmental aqueous matrices. Anal Chim Acta 385:337–343. doi:10.1016/S0003-2670(98)00693-X Ferri T, Sangiorgio P (2001) Selenium speciation in waters: role of dissolved polysaccharides on the mobilization process. Ann Chim 91:229–238 Figuera MM, Volesky B, Mathieu HJ (1999) Instrumental analysis of iron species biosorption by Sargassum biomass. Environ Sci Technol 33:1840–1846. doi:10.1021/es981111p Guezennec J (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? J Ind Microbiol Biotechnol 29:204–208. doi:10.1038/sj.jim.7000298 Gutnick D (1997) Engineering polysaccharides for biosorption of heavy at oil/water interfaces. Res Microbiol 148:519–521. doi:10.1016/S0923-2508(97)88353-2 Loaec M, Olier R, Guezennec J (1997) Uptake of lead, cadmiun and zinc by a novel bacterial exopolysaccharide. Water Res 31:1171–1179. doi:10.1016/S0043-1354(96)00375-2 Loaec M, Olier R, Guezennec J (1998) Chelating properties of bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohydr Polym 35:65–70. doi:10.1016/S0144-8617(97)00109-4 Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271. doi:10.1007/s10126-004-5118-2 Mao Che L, Andrefouet S, Bothorel V, Guezennec M, Rougeaux H, Guezennec J, Deslandes E, Trichet J, Matheron R, Le Campion T, Payri C, Caumette P (2001) Physical, chemical, and microbiological characteristics of microbial mats (kopara) in the South Pacific atolls of French Polynesia. Can J Microbiol 47:994–1012. doi:10.1139/cjm-47-11-994 Nishino T, Nagumo T (1992) Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydr Res 229:355–362. doi:10.1016/S0008-6215(00)90581-0 Norberg AB, Person H (1984) Accumulation of heavy-metal ions by Zoogloea ramigera. Biotechnol Bioeng 26:239–246. doi:10.1002/bit.260260307 Raguenes G, Moppert X, Richert L, Ratiskol J, Payri C, Costa B, Guezennec J (2004) A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a “kopara” mat located in Rangiroa, an atoll of French Polynesia. Curr Microbiol 49:145–151. doi:10.1007/s00284-004-4303-x Richert L, Golubic S, Guedes R, Ratiskol J, Payri C, Guezennec J (2005) Characterization of exopolysaccharides produced by cyanobacteria isolated from polynesian microbial mats. Curr Microbiol 51:379–384. doi:10.1007/s00284-005-0069-z Rougeaux H, Guezennec M, Mao Che L, Payri C, Deslandes E, Guezennec J (2001) Microbial communities and exopolysaccharides from polynesian mats. Mar Biotechnol 3:181–187. doi:10.1007/s101260000063 Sandford PA, Baird J (1983) Industrial utilization of polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic Press, London, pp 411–490 Shilo M (1989) The unique characteristics of benthic cyanobacteria. Microbial mats. In Cohen, Y., Rosenberg, E. (eds) American Society for Microbiology, Washington, pp 207–13 Sutherland IW (1989) Bacterial exopolysaccharides: their nature and production. Antibiot Chemother 42:50–55 Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv 12:393–448. doi:10.1016/0734-9750(94)90018-3 Volesky B (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 7–44 Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250. doi:10.1021/bp00033a001 Volpi N, Sandri I, Venturelli T (1995) Activity of chrondroitin ABC lyase and hyaluronidase on free-radical degraded chondroitin sulfate. Carbohydr Res 279:193–200. doi:10.1016/0008-6215(95)00246-4 Wan Ngah WS, Kamari A, Koay YJ (2004) Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34:155–161. doi:10.1016/j.ijbiomac.2004.03.001 Weiner R, Langille S, Quintero E (1995) Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind Microbiol 15:339–346. doi:10.1007/BF01569989