Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in Southwestern Fujian Province, China

Ore Geology Reviews - Tập 71 - Trang 502-515 - 2015
Renguang Zuo1, Zhenjie Zhang1, Daojun Zhang1, Emmanuel John M. Carranza2, Haicheng Wang1
1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
2Department of Earth and Oceans, James Cook University, Townsville, Queensland 4811, Australia

Tài liệu tham khảo

Agterberg, 1989, Systematic approach to dealing with uncertainty of geoscience information in mineral exploration, 165 Agterberg, 1989, Computer programs for mineral exploration, Science, 245, 76, 10.1126/science.245.4913.76 Agterberg, 2011, A modified weights-of-evidence method for regional mineral resource estimation, Nat. Resour. Res., 20, 95, 10.1007/s11053-011-9138-0 Agterberg, 1990, Statistical pattern integration for mineral exploration, 1 An, 1991, Application of fuzzy set theory for integration of geological, geophysical and remote sensing data, Can. J. Explor. Geophys., 27, 1 An, 1994, Uncertainty management in integration of exploration data using the belief functions, Nonrenewable Resour., 3, 60, 10.1007/BF02261716 Bárdossy, 2004 Bonham-Carter, 1994 Bonham-Carter, 1989, Weights-of-evidence modelling: a new approach to mapping mineral potential, 171 Carranza, 2004, Weights-of-evidence modelling of mineral potential: a case study using small number of prospects, Abra, Philippines, Nat. Resour. Res., 13, 173, 10.1023/B:NARR.0000046919.87758.f5 Carranza, 2009, Geochemical anomaly and mineral prospectivity mapping in GIS, vol. 11 Carranza, 2010, Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes, Geochem. Explor. Environ. Anal., 10, 171, 10.1144/1467-7873/09-223 Carranza, 2014, Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values, Nat. Resour. Res., 10.1007/s11053-014-9250-z Carranza, 2003, Evidential belief functions for geologically constrained mapping of gold potential, Baguio district, Philippines, Ore Geol. Rev., 22, 117, 10.1016/S0169-1368(02)00111-7 Carranza, 2005, Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia, Nat. Resour. Res., 14, 48, 10.1007/s11053-005-4678-9 Carranza, 2008, Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain, Int. J. Appl. Earth Obs. Geoinformation, 10, 374, 10.1016/j.jag.2008.02.008 Chan, 1956, Examples of “activizing region” in the Chinese platform with special reference to the “Cathaysia” problem, Acta Geol. Sin., 36, 239 Chen, 2002, New knowledge of the information cause of ore deposit during the exploitation process of Makeng iron mine, Met. Mine, 317, 50 Chen, 2010, New understanding of ore-control structure feature of Fujian Makeng Iron Mine, Met. Mine, 404, 96 Chen, 1998, Archipelago orogenesis — examples from Indosinian orogenic belts in south China, Earth Sci. Front., 5, 98 Chen, 1985, The origin of Makeng iron deposit, Fujian, Geochimica, 4, 350 Cheng, 1999, Multifractal interpolation, 1, 245 Cheng, 2000, Interpolation by means of multiftractal, kriging and moving average techniques Cheng, 2007, Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China, Ore Geol. Rev., 32, 314, 10.1016/j.oregeorev.2006.10.002 Cheng, 2012, Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas, J. Geochem. Explor., 122, 55, 10.1016/j.gexplo.2012.07.007 Cheng, 1999, Fuzzy weights of evidence method and its application in mineral potential, Nat. Resour. Res., 8, 27, 10.1023/A:1021677510649 Cheng, 2000, Integrated spatial and spectrum method for geochemical anomaly separation, Nat. Resour. Res., 9, 43, 10.1023/A:1010109829861 Cheng, 2001, GeoDAS: a new GIS system for spatial analysis of geochemical data sets for mineral exploration and environmental assessment, 5 Cheng, 2010, Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China, Biogeosciences, 7, 3019, 10.5194/bg-7-3019-2010 Cooper, 2005, Differential reduction to the pole, Comput. Geosci., 31, 989, 10.1016/j.cageo.2005.02.005 Fabbri, 2008, On blind tests and spatial prediction models, Nat. Resour. Res., 17, 107, 10.1007/s11053-008-9072-y Ge, 1981, Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin, Acta Geosci. Sin., 3, 47 Guo, 1996, On the Meso–Neoproterozoic Jiangnan island arc: its kinematics and dynamics, Geol. J. China Univ., 2, 1 Han, 1983, Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian province, Bull. Inst. Miner. Depos. Chin. Acad. Geol. Sci., 7, 1 Huang, 1960, A preliminary summary of basic geological structural features of China, Acta Geol. Sin., 40, 1 Huang, 1977, An outline of the tectonic characteristics of China, Acta Geol. Sin., 117 Jiang, 2009, Analysis of metallogenic geological features in Makeng iron deposit, Mod. Min., 8, 89 Kreuzer, 2008, Linking mineral deposit models to quantitative risk analysis and decision-making in exploration, Econ. Geol., 103, 829, 10.2113/gsecongeo.103.4.829 Li, 1993, Geochronological framework and isotope system in Southern China: implications for the tectonic evolution of the crust growth, Bull. Mineral. Petrol. Geochem., 111 Li, 1999, The breakup of Rodinia: did it start with a mantle plume beneath South China?, Earth Planet. Sci. Lett., 173, 171, 10.1016/S0012-821X(99)00240-X Li, 2002, Grenvillian continental collision in south China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia, Geology, 30, 163, 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2 Li, 2003, Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825Ma?, Precambrian Res., 122, 45, 10.1016/S0301-9268(02)00207-3 Li, 2003, Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia, Precambrian Res., 122, 85, 10.1016/S0301-9268(02)00208-5 Lin, 2008, Discussion on geological features and prospecting direction of Makeng iron deposit, Express Inf. Min. Ind., 10, 84 Lin, 2011, 147 Lisitsin, 2014, Probabilistic fuzzy logic modeling: quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations, Math. Geosci., 46, 747, 10.1007/s11004-014-9534-1 Mann, 1993, 241 Mao, 2003, Geochronology and geochemical characteristics of the early Mesozoic Tangquan pluton in southwestern Fujian and its tectonic implications, Acta Geol. Sin. Engl. Ed., 77, 361, 10.1111/j.1755-6724.2003.tb00752.x Mao, 2004, Mesozoic large scale mineralization and multiple lithospheric extensions in South China, Earth Sci. Front., 11, 45 Mao, 2004, The Mesozoic rock-forming and ore-forming processes and tectonic environment evolution in Shanghang–Datian region, Fujian, Acta Petrol. Sin., 20, 285 Mao, 2007, Large-scale tungsten–tin mineralization in the Nanling region South China: metallogenic ages and corresponding geodynamic process, Acta Petrol. Sin., 23, 2329 Mao, 2008, Spatial–temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings, Geol. J. China Univ., 14, 510 McCuaig, 2007, Fooling ourselves — Dealing with model uncertainty in a mineral systems approach to exploration McCuaig, 2009, Fooling ourselves: recognizing uncertainty and bias in exploration targeting, Centre Explor. Target. Q. News, 2, 1 McCuaig, 2010, Translating the mineral systems approach into an effective targeting system, Ore Geol. Rev., 38, 128, 10.1016/j.oregeorev.2010.05.008 Porwal, 2010, Introduction to the special issue: mineral prospectivity analysis and quantitative resource estimation, Ore Geol. Rev., 38, 121, 10.1016/j.oregeorev.2010.06.002 Porwal, 2003, Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping, Nat. Resour. Res., 12, 1, 10.1023/A:1022693220894 Porwal, 2006, A hybrid fuzzy weights-of-evidence model for mineral potential mapping, Nat. Resour. Res., 15, 1, 10.1007/s11053-006-9012-7 Shu, 2006, Predevonian tectonic evolution of South China: from Cathaysian block to Caledonian period folded orogenic belt, Geol. J. China Univ., 12, 418 Shu, 2012, An analysis of principal features of tectonic evolution in South China Block, Geol. Bull. China, 31, 1035 Shu, 1988, The first discovery of the high-pressure minerals in the collage zone of Proterozoic terrains in north Jiangxi and its tectonic significance, J. Nanjing Univ. (Nat. Sci. Ed.), 24, 421 Shu, 2004, Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China, Geol. Bull. China, 23, 876 Shu, 2008, Late Palaeozoic–Early Mesozoic geological features of South China: response to the Indosinian collision events in Southeast Asia, Compt. Rendus Geosci., 340, 151, 10.1016/j.crte.2007.10.010 Shu, 2009, Jurassic sedimentary features and tectonic settings of southeastern China, Sci. China Ser. D Earth Sci., 52, 1969, 10.1007/s11430-009-0159-z Shu, 2009, Mesozoic tectonic evolution of the Southeast China Block: new insights from basin analysis, J. Asian Earth Sci., 34, 376, 10.1016/j.jseaes.2008.06.004 Shu, 2011, Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia, Precambrian Res., 187, 263, 10.1016/j.precamres.2011.03.003 Singer, 2010, Progress in integrated quantitative mineral resource assessments, Ore Geol. Rev, 38, 242, 10.1016/j.oregeorev.2010.02.001 Singer, 2001, Some simple guides to finding useful information in exploration geochemical data, Nat. Resour. Res., 2, 137, 10.1023/A:1011552810482 Singer, 2010, 232 The Western Geological Party of Fujian (TWGPF), 1984 Wang, 2011, Geochemical probe into China's continental crust, Acta Geoscientica Sinica, 32, 65 Wang, 1981, A discussion on genesis of Makeng type iron deposit in Southwestern Fujian, Bull. Nanjing Inst. Geol. Miner. Resour. Chin. Acad. Geol. Sci., 2, 1 Xie, 1997, Geochemical mapping in China, J. Geochem. Explor., 60, 99, 10.1016/S0375-6742(97)00029-0 Xie, 2008, Multi-scale geochemical mapping in China, Geochem. Explor. Environ. Anal., 8, 333, 10.1144/1467-7873/08-184 Xu, 1987, It is the southern China orogenic belt and is not the southern China platform, Sci. China D, 1107 Xu, 2001, A fractal filtering technique for processing regional geochemical maps for mineral exploration, Geochemistry: Exploration, Environment, Analysis, 1, 147 Yang, 2008, SHRIMP zircon U–Pb dating of quartz porphyry from Zhongjia tin–polymetallic deposit in Longyan area, Fujian Province, and its geological significance, Mineral Deposits, 27, 329 Yuan, 2013, 73 Zadeh, 1965, Fuzzy sets, Inf. Control., 8, 338, 10.1016/S0019-9958(65)90241-X Zhang, 2012, 188 Zhang, 2013, Iron isotope systematics of magnetite: implications for the genesis of Makeng iron deposit, southern China, Acta Geol. Sin. (Engl. Ed.), 87, 840 Zhang, 2014, Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China, Ore Geol. Rev., 57, 53, 10.1016/j.oregeorev.2013.09.009 Zhang, 2014, Tectonic evolution of southwestern Fujian province and spatial–temporal distribution regularity of mineral deposits, Acta Petrol. Sin. Zhang, 2012, Geology and molybdenite Re–Os ages of Makeng skarn-type Fe–Mo deposit in Fujian province, J. Jilin Univ. (Earth Sci. Ed.), 42, 224 Zhang, 2012, Zircon U–Pb age and Nd–Sr–Pb isotopic characteristics of Dayang–Juzhou granite in Longyan, Fujian Province and its geological significance, Acta Petrol. Sin., 28, 225 Zhang, 2012, Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance, Earth Sci. J. China Univ. Geosci., 37, 1217 Zhang, 2013, A comparison of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression for mapping mineral prospectivity, Math. Geosci. Zhang, 2014, Geological features and formation processes of the Makeng Fe deposit, China, Resour. Geol. Zhao, 1983, The calcic-skarn iron ore deposit of Making type in Southwestern Fujian, Bull. Inst. Miner. Depos. Chin. Acad. Geol. Sci., 7, 1 Zhao, 2012, Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China, J. Geochem. Explor., 122, 81, 10.1016/j.gexplo.2012.08.006 Zhu, 1982, Discussion on the mineralization of Makeng iron deposit, Fujian, Shanghai Geol., 2, 21 Zuo, 2011, Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China, Appl. Geochem., 26, S271, 10.1016/j.apgeochem.2011.03.122 Zuo, 2011, Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China), J. Geochem. Explor., 111, 13, 10.1016/j.gexplo.2011.06.012 Zuo, 2014, Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China, J. Geochem. Explor., 139, 170, 10.1016/j.gexplo.2013.08.013 Zuo, 2009, Application fractal and multifractal methods to mapping prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China, Geochim. Cosmochim. Acta, 73 Zuo, 2012, Fractal/multifractal modelling of geochemical exploration data, J. Geochem. Explor., 122, 1, 10.1016/j.gexplo.2012.09.009 Zuo, 2012, Geological process-based mineral resource quantitative prediction and assessment for Makeng-type iron polymetallic deposits in Fujian, Earth Sci. J. China Univ. Geosci., 37, 1183 Zuo, 2013, Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization, Appl. Geochem., 28, 202, 10.1016/j.apgeochem.2012.10.031 Zuo, 2013, A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas, Appl. Geochem., 33, 165, 10.1016/j.apgeochem.2013.02.009