Performance comparison of powder mixed EDM and traditional EDM on TZM-molybdenum super alloy using response surface methodology

Springer Science and Business Media LLC - Tập 17 - Trang 2647-2658 - 2022
Kapil Surani1, Shailesh Patel2, Ali Jawad Alrubaie3, Ankit Oza4, Hitesh Panchal5, Sandeep Kumar6, Sasan Zahmatkesh7
1Faculty of Engineering and Technology, Sankalchand Patel University, Visnagar, India
2Department of Mechanical Engineering, Faculty of Engineering and Technology, Sankalchand Patel University, Visnagar, India
3Department of Medical Instrumentation Engineering Techniques, Al-Mustaqbal University College, Hilla, Iraq
4Department of Mechanical Engineering, Institute of Advanced Research, Gandhinagar, India
5Mechanical Engineering Department, Government Engineering College Patan, Patan, India
6Division of Research and Innovation, Uttaranchal University, Dehradun, India
7Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran

Tóm tắt

Excellent characteristics of Titanium Zirconium Molybdenum alloy (TZM-Molybdenum) make them favorable for use in aerospace industries. Such super alloys must be machined precisely for aerospace purposes. Traditional machining procedures subject TZM Molybdenum to several challenges. Electrical discharge machining (EDM) is an excellent method for generating EDM is a fantastic technique for creating complex and intricate profile geometries. and complicated profile geometries. It's an excellent tool for materials that are tough to cut. The suspension of an adequate quantity of powder particles in dielectric oil improves machining efficiency with better accuracy, greater productivity, and a superior surface finish while machining newly developed molybdenum alloys. The present investigation tested the effect on TZM-Molybdenum using silicon carbide (SiC) powder-mixed dielectric with peak current (IP), pulse-on-time (TON), pulse-off-time (TOFF), and gap voltage (V) as input variables on material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The response surface methodology was used to discover the most significant parameter for the responses and to pick the crucial set of parameters. The suspended powder of has a massive impact on the multi-objective performance characteristic in PMEDM. When we used SiC additives in PMEDM, we saw a 14.05% rise in MRR, an 11.98% drop in TWR, and a 12.24% decrease in SR. The insertion of SiC micro particles to dielectric fluid enhances TZM-Molybdenum EDM performance over traditional EDM. Surface roughness is improved by employing powder in dielectric processes compared to traditional EDM.

Tài liệu tham khảo

Prakash, C., Singh, S., Singh, M., Verma, K., Chaudhary, B., Singh, S.: Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy. Vacuum 158, 180–190 (2018) Gupta, N.K., Somani, N., Prakash, C., Singh, R., Walia, A.S., Singh, S., Pruncu, C.I.: Revealing the WEDM process parameters for the machining of pure and heat-treated Titanium (Ti-6Al-4V) alloy. Materials 14, 2292 (2021). https://doi.org/10.3390/ma14092292 Kumar, A., Grover, N., Manna, A., et al.: Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. (2020). https://doi.org/10.1177/2633366X20963137 Ishfaq, K., Maqsood, M.A., Anwar, S., Harris, M., Alfaify, A., Zia, A.W.: EDM of Ti6Al4V under nano graphene mixed dielectric: a detailed roughness analysis. Int. J. Adv. Manuf. Technol. 120, 7375–7388 (2022). https://doi.org/10.1007/s00170-022-09207-y Vora, J., Khanna, S., Chaudhari, R., Patel, V.K., Paneliya, S., Pimenov, D.Y., Giasin, K., Prakash, C.: Machining parameter optimization and experimental investigations of nano-graphene mixed electrical discharge machining of Nitinol shape memory alloy. J. Mater. Res. Technol. 19, 653–668 (2022). https://doi.org/10.1016/j.jmrt.2022.05.076 Van Dong, P., Phan, N.H., Van Thien, N., Kien, N.H., Hung, T.Q., Anh, N.M., Thinh, H.X., Van Nam, H.: Enhancing the machinability of SKD61 die steel in power-mixed EDM process with TGRA-based multi criteria decision making. J. Mech. Behav. Mater. 31, 345–356 (2022). https://doi.org/10.1515/jmbm-2022-0039 Chaudhari, R., Prajapati, P., Khanna, S., Vora, J., Patel, V.K., Pimenov, D.Y., Giasin, K.: Multi-response optimization of Al2O3 nanopowder-mixed wire electrical discharge machining process parameters of nitinol shape memory alloy. Materials (MDPI) 15, 1–21 (2022). https://doi.org/10.3390/ma15062018 Shastri, R.K., Mohanty, C.P., Dash, S., Gopal, K.M., Annamalai, A.R., Jen, C.P.: Reviewing performance measures of the die-sinking electrical discharge machining process: challenges and future scopes. Nanomaterials (2022). https://doi.org/10.3390/nano12030384 Ashok, M., Niranjan, T., Chokalingam, S., Singaravel, B.: Investigation of powder mixed electrical discharge machining and process parameters optimization using Taguchi based overall evaluation criteria. In: IOP Conf. Series: Materials Science and Engineering ICRAME, vol. 1057 (2021), doi: https://doi.org/10.1088/1757-899X/1057/1/012075 MangapathiRao, K., Vinaykumar, D., Chandra Shekar, K., Ranjith Kumar, R.: Investigation and analysis of EDM process—a new approach with Al2O3 nano powder mixed in sunflower oil. In: IOP Conf. Series: Materials Science and Engineering ICRAME, vol. 1057 (2021), doi: https://doi.org/10.1088/1757-899X/1057/1/012059. Bilal, A., Rashid, A., Liu, C., Jahan, M. P., Talamona, D., Perveen, A.: Powder mixed micro electro discharge machining of aluminium nitride ceramic. In: MATEC Web of Conference ICBMM 303 (2019), Doi: https://doi.org/10.1051/matecconf/20193030 Jeavudeen, S., Siddhi Jailani, H.: Powder additives influence on dielectric strength of EDM fluid and material removal. Int. J. Mach. Mach. Mater. 22, 47–61 (2020) Taherkhania, A., et al.: Investigation of Surface quality in cost of goods manufactured (COGM) method of μ-Al2O3 powder- mixed-EDM process on machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.21203/rs.3.rs-297047/v1 Umar Farooq, M., Pervez Mughal, M., Ahmed, N., Ahmad Mufti, N., Al-Ahmari, A.M., He, Y.: On the investigation of surface integrity of Ti6Al4V ELI using Si-mixed electric discharge machining. Materials 13, 1549 (2020) Hosni, N.A.J., Lajis, M.A.: Multi-response optimization of the machining characteristics in electrical discharge machining (EDM) using span-20 surfactant and chromium (Cr) powder mixed. Materialwiss. Werkstofftech 50, 329–335 (2019) Prakash, C., Singh, S., Singh, M., Antil, P., Aliyu, A.A.A., Abdul-Rani, A.M., Sidhu, S.S.: Multi-objective Optimization of MWCNT Mixed Electric Discharge Machining of Al–30SiCp MMC Using Particle Swarm Optimization. Materials Horizons: From Nature to Nanomaterials, pp. 145–164 (2018). https://doi.org/10.1007/978-981-13-2417-8_7 Mohanty, S., Mishra, A., Nanda, B.K., Routara, B.C.: Routara, Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization. Alex. Eng. J. (2017). https://doi.org/10.1016/j.aej.2017.02.006 Kumar, V., Sharma, N., Kumar, K., Khanna, R.: WC-Co alloy surface modification using Al and Si powder during the thermal erosion (WEDM) process. Part. Sci. Technol. 36(7), 878–886 (2017) Cyril Pilligrin, J., Asokan, P., Jerald, J., Sumit, K., Kanagaraj, G.: Experimental investigation on performance of additive mixed dielectric during micro-electric discharge drilling on 316L stainless steel. Mater. Manuf. Process. 32(6), 638–644 (2016) Kumar, H.: Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM). Int. J. Adv. Manuf. Technol. 76(1–4), 105–113 (2014) Vaishya, R., Sharma, V., Gupta, A., et al.: Finite element modeling of quartz material for analyzing material removal rate in ECDM process. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01037-2 Klocke, F., Lung, D., Antonoglou, G., Thomaidis, D.: The effects of powder suspended dielectrics on the thermal influenced zone by electro-discharge machining with small discharge energies. J. Mater. Process. Technol. 149, 191–197 (2004) Singh, A.K., Patowari, P.K., Deshpande, N.V.: Analysis of micro-rods machined using reverse micro-EDM. J. Braz. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1519-4 Oza, A.D., Kumar, A., Badheka, V., Arora, A., Kumar, M., Pruncu, C.I., Singh, T.: Improvement of the machining performance of the TW-ECDM process using magnetohydrodynamics (MHD) on quartz material. Materials 14, 2377 (2021). https://doi.org/10.3390/ma14092377 Vaishya, R.O., Oza, A.D., Gupta, A.: Multiple parameter optimization by wire electrochemical discharge machining process on quartz glass. Adv. Manuf. Process. (2020). https://doi.org/10.1007/978-981-15-9117-4_6 Patil, A.S., Sunnapwar, V.K., Bhole, K.S., et al.: Effective machining parameter selection through fuzzy AHP-TOPSIS for 3D finish milling of Ti6Al4V. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00993-z Kumar, M., Vaishya, R.O., Oza, A.D., Suri, N.M.: Experimental investigation of wire-electrochemical discharge machining (WECDM) performance characteristics for quartz material. Silicon 12(9), 2211–2220 (2019). https://doi.org/10.1007/s12633-019-00309-z10.1007/s12633-019-00309-z Rouniyar, A.K., Shandilya, P.: Semi-empirical modeling and optimization of process parameters on overcut during MFAPM-EDM of Al6061 alloy. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. (2021). https://doi.org/10.1177/09544089211015890 Jatti, V.S., Bagane, S.: Thermo-electric modelling, simulation and experimental validation of powder mixed electric discharge machining (PMEDM) of BeCu alloys. Alex. Eng. J. (2017). https://doi.org/10.1016/j.aej.2017.02.023 Liu, C.T., Inouye, H.: Internal oxidation and mechanical properties of TZM-Mo alloy. Metall. Mater. Trans. B 5(12), 2515–2525 (1974). https://doi.org/10.1007/bf02643872 Gerhardt, R., (Ed.). Properties and Applications of Silicon Carbide. IntechOpen. ISBN 978-953-307-201-2 (2011). https://doi.org/10.5772/615 Kumar, V., Kumar, A., Kumar, S., Singh, N.K.: Comparative study of powder mixed EDM and conventional EDM using response surface methodology. Mater. Today Proc. 5, 18089–18094 (2018) Kuriachen, B., Mathew, J.: Effect of powder mixed dielectric on material removal and surface modification in micro electric discharge machining of Ti-6Al-4V. Mater. Manuf. Processes 31(4), 439–446 (2015) Bhaumik, M., Maity, K.: Effect of process parameters on the surface crack density of AISI 304 in PMEDM. World J. Eng. 14(6), 475–482 (2017) Kumar, S., Dhingra, A.K., Kumar, S.: Parametric optimization of powder mixed electrical discharge machining for nickel based superalloy inconel-800 using response surface methodology. Mech. Adv. Mater. Mod. Processes 3(7), 1–17 (2017) Mohal, S., Kumar, H.: Parametric optimization of multiwalled carbon nanotube-assisted electric discharge machining of Al-10%SiCp metal matrix composite by response surface methodology. Mater. Manuf. Processes 32(3), 263–273 (2016) Singh, B., Kumar, J., Kumar, S.: Influences of process parameters on MRR improvement in simple and powder-mixed EDM of AA6061/10%SiC composite. Mater. Manuf. Processes 30(3), 303–312 (2014) Sabur, A., Mohammed Mehdi, S., Mohammad, Y.A., Maleque, M.A., Moudood, A.: Investigation of surface roughness in Micro-EDM of nonconductive ZrO2 ceramic with powder mixed dielectric fluid. Adv. Mater. Res. 1115, 16–19 (2015)