Quantification of sediment reworking by the Asiatic clam Corbicula fluminea Müller, 1774
Tóm tắt
Active organisms modify the substratum in which they dwell. This process, called “bioturbation”, affects the way that biogeochemical fluxes are mediated at the substratum–water interface. In the frame of this work, the bioturbation potential of the Asiatic clam Corbicula fluminea was characterized and quantified. We measured the displacement of fluorescent particles by C. fluminea burying in a size-based experimental design in order to explore the effects of body-size on sediment reworking. Our results stress that C. fluminea belongs to the functional group of biodiffusors, and that C. fluminea can be considered as an intermediate sediment reworker. We suggest that bioturbation was mainly induced by the pedal-feeding activity of the clams. Results also showed that, though large clams induced displacement of particles deeper into the sediment, small clams showed the highest net sediment reworking activity. This result was in contrast to the initial hypothesis of biovolume as the main driver for particle displacement by bioturbating organisms. Life-history traits and specific features of pedal-feeding could explain the observed pattern.
Tài liệu tham khảo
Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In McCall, P. L. & M. J. S. Tevesz (eds), Animal–sediment relations – the biogenic alteration of sediments. Plenum Press, New York: 53–102.
Boltovskoy, D., I. Izaguirre & N. Correa, 1995. Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312: 171–182.
Boudreau, B. P., 1986. Mathematics of tracer mixing in sediments: I. Spatially-dependent, diffusive mixing. American Journal of Science 286: 161–198.
Cataldo, D. & D. Boltovskoy, 1998. Population dynamics of Corbicula fluminea (Bivalvia) in the Paraña river delta (Argentina). Hydrobiologia 380: 153–163.
Ciutat, A., M. Gerino, N. Mesmer-Dudons, P. Anschutz & A. Boudou, 2005. Cadmium bioaccumulation in Tubificidae from the overlying water source and effects on bioturbation. Ecotoxicology and Environmental Safety 60: 237–246.
Cohen, R. R. H., P. V. Dresler, E. J. P. Phillips & R. L. Cory, 1984. The effect of the Asiatic clam, Corbicula fluminea, on phytoplankton of the Potomac River, Maryland. Limnology and Oceanography 29: 170–180.
Dame, R. F., 1996. Ecology of marine bivalves: an ecosystem approach. CRS Press, New York.
Dorgan, K. M., P. A. Jumars, B. Johnson, B. P. Boudreau & E. Landis, 2005. Burrowing mechanics: burrow extension by crack propagation. Nature 433: 475.
Filgeira, R., U. Labarta & M. J. Fernández-Reiriz, 2008. Effect of condition index on allometric relationships of clearance rate in Mytilus galloprovincialis. Revista de Biología Marina y Oceanografía 43: 391–398.
Fisher, J. B., W. J. Lick, P. L. McCall & J. A. Robbins, 1980. Vertical mixing of lake sediments by tubificid oligochaetes. Journal of Geophysical Research 85: 3997–4006.
François, F., K. Dalègre, F. Gilbert & G. Stora, 1999. Specific variability within functional groups. Study of the sediment reworking of two Veneridae bivalves, Ruditapes decussatus and Venerupis aurea. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 322: 339–345.
François, F., J. C. Poggiale, J. P. Durbec & G. Stora, 2001. A new model of bioturbation for a functional approach to sediment reworking resulting from macrobenthic communities. In Aller, J. Y., S. A. Woodin & R. C. Aller (eds), Organism–sediment interactions. University of South Carolina Press, Columbia: 73–86.
Gilbert, F., S. Hulth, V. Grossi, J. Poggiale, G. Desrosiers, R. Rosenberg, M. Gérino, F. François-Carcaillet, E. Michaud & G. Stora, 2007. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): importance of faunal biovolume. Journal of Experimental Marine Biology and Ecology 348: 133–144.
Guinasso, N. L. & D. R. Schink, 1975. Quantitative estimates of biological mixing rates in abyssal sediments. Journal of Geophysical Research 80: 3032–3043.
Gutiérrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.
Hakenkamp, C. C. & M. A. Palmer, 1999. Introduced bivalves in freshwater ecosystems: the impact of Corbicula on organic matter dynamics in a sandy stream. Oecologia 119: 445–451.
Hakenkamp, C. C., S. G. Ribblett, M. A. Palmer, C. M. Swan, J. W. Reid & M. R. Goodison, 2001. The impact of an introduced bivalve (Corbicula fluminea) on the benthos of a sandy stream. Freshwater Biology 46: 491–501.
Hedman, J. E., J. S. Gunnarsson, G. Samuelsson & F. Gilbert, 2011. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. Journal of Experimental Marine Biology and Ecology 407: 294–301.
Kristensen, E., G. Penha-Lopes, M. Delefosse, T. B. Valdemarsen, C. O. Quintana & G. T. Banta, 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.
Lagauzère, S., L. Pischedda, P. Cuny, F. Gilbert, G. Stora & J. M. Bonzom, 2009. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination. Environmental Pollution 157: 1234–1242.
Lagauzère, S., F. Coppin, M. Gérino, S. Delmotte, G. Stora & J. M. Bonzom, 2011. An alternative method of particulate fluorescent tracer analysis in sediments using a microplate fluorimeter. Environmental Technology 32: 551–560.
Lauritsen, D. D., 1986. Filter-feeding in Corbicula fluminea and its effect on seston removal. Journal of the North American Benthological Society 5: 165–172.
Lauritsen, D. D. & S. C. Mozley, 1989. Nutrient excretion by the Asiatic clam Corbicula fluminea. Journal of the North American Benthological Society 8: 134–139.
Lucy, F. E., A. Y. Karatayev & E. B. Lyubov, 2012. Predictions for the spread, population density, and impacts of Corbicula fluminea in Ireland. Aquatic Invasions 7: 465–474.
Maire, O., J. C. Duchène, R. Rosenberg, J. B. de Mendonca & A. Grémare, 2006. Effects of food availability on sediment reworking in Abra ovata and A. nitida. Marine Ecology Progress Series 319: 135–153.
Maire, O., J. C. Duchène, A. Grémare, V. S. Malyuga & F. J. R. Meysman, 2007. A comparison of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime and wintertime, with a comparison between two models of sediment reworking. Journal of Experimental Marine Biology and Ecology 343: 21–36.
Matisoff, G. & W. Xiaosong, 1998. Solute transport in sediments by freshwater infaunal bioirrigators. Limnology and Oceanography 43: 1487–1499.
McCall, P. L., M. J. S. Tevesz, X. Wang & J. R. Jackson, 1995. Particle mixing rates of freshwater bivalves: Anodonta grandis (Unionidae) and Sphaerium striatinum (Pisidiidae). Journal of Great Lakes Research 21: 333–339.
McMahon, R. F., 2000. Invasive characteristics of the freshwater bivalve Corbicula fluminea. In Claudi, R. & J. Leach (eds), Nonindigenous freshwater organisms: vectors, biology and impacts. Lewis Publishers, Boca Raton.
Mermillod-Blondin, F., R. Rosenberg, F. François, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284.
Mermillod-Blondin, F., A. Foulquier, F. Gilbert, S. Navel, B. Montuelle, F. Bellvert, G. Comte, V. Grossi, F. Fourel, C. Lecuyer & L. Simon, 2013. Benzo (a) pyrene inhibits the role of the bioturbator Tubifex tubifex in river sediment biogeochemistry. Science of the Total Environment 450: 230–241.
Meysman, F. J. R., J. J. Middelburg & C. H. R. Heip, 2006. Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology & Evolution 21: 688–695.
Michaud, E., G. Desrosiers, F. Mermillod-Blondin, B. Sundby & G. Stora, 2005. The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology 326: 77–88.
Ouellette, D., G. Desrosiers, J. P. Gagne, F. Gilbert, J. C. Poggiale, P. U. Blier & G. Stora, 2004. Effects of temperature on in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Marine Ecology Progress Series 266: 185–193.
Persoone, G., 1971. A simple volumeter for small invertebrates. Helgoländer Wissenschaftliche Meeresuntersuchungen 22: 141–143.
R Development Core Team, 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://R-project.org.
Raikow, D. F. & S. K. Hamilton, 2001. Bivalve diets in a midwestern US stream: a stable isotope enrichment study. Limnology and Oceanography 46: 514–522.
Reid, R. G. B., R. F. McMahon, D. O. Foighil & R. Finnigan, 1992. Anterior inhalant currents and pedal feeding in bivalves. The Veliger 35: 93–104.
Rhoads, D. C., 1963. Rates of sediment reworking by Yoldia limatula in Buzzards Bay, Massachusetts, and Long Island Sound. Journal of Sedimentary Research 33: 723–727.
Riisgård, H. U., 1988. Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves. Marine Ecology Progress Series 45: 217–223.
Saloom, M. E. & R. Scot Duncan, 2005. Low dissolved oxygen levels reduce anti-predation behaviours of the freshwater clam Corbicula fluminea. Freshwater Biology 50: 1233–1238.
Schumacher, B. A., 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. United States Environmental Protection Agency Report (NCEAC-1182, EMASC-001): 25.
Solan, M., B. J. Cardinale, A. L. Downing, K. A. M. Engelhardt, J. L. Ruesink & D. S. Srivastava, 2004. Extinction and ecosystem function in the marine benthos. Science 306: 1177–1180.
Sousa, R., C. Antunes & L. Guilhermino, 2008. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie – International Journal of Limnology 44: 85–94.
Sousa, R., J. L. Gutiérrez & D. C. Aldridge, 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions 11: 2367–2385.
Stites, D. L., A. C. Benke & D. M. Gillespie, 1995. Population dynamics, growth, and production of the Asiatic clam, Corbicula fluminea, in a blackwater river. Canadian Journal of Fisheries and Aquatic Sciences 52: 425–437.
Strayer, D. L., 1999. Effects of alien species on freshwater mollusks in North America. Journal of the North American Benthological Society 18: 74–98.
Strayer, D. L. & H. M. Malcom, 2007. Effects of zebra mussels (Dreissena polymorpha) on native bivalves: the beginning of the end or the end of the beginning? Journal of the North American Benthological Society 26: 111–122.
Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.
Welch, K. J. & J. E. Joy, 1984. Growth rates of the asiatic clam, Corbicula fluminea (Müller), in the Kanawha River, West Virginia. Freshwater Invertebrate Biology 3: 139–142.
Werner, S. & K.-O. Rothhaupt, 2007. Effects of the invasive bivalve Corbicula fluminea on settling juveniles and other benthic taxa. Journal of the North American Benthological Society 26: 673–680.
Wheatcroft, R. A., P. A. Jumars, C. R. Smith & A. R. M. Nowell, 1990. A mechanistic view of the particulate biodiffusion coefficient: step lengths, rest periods and transport directions. Journal of Marine Research 48: 177–207.
Yeager, M. M., D. S. Cherry & R. J. Neves, 1994. Feeding and burrowing behaviors of juvenile rainbow mussels, Villosa iris (Bivalvia: Unionidae). Journal of the North American Benthological Society 13: 217–222.