Highly stretchable and self-healing SEBS-PVDF composite films for enhanced dielectric elastomer generators

Soon Joo Yoon1, Hyunseung Kim1,2, Chang Kyu Jeong1,2,3, Yoon Kyeung Lee1,4
1Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, Republic of Korea
2Department of Energy Storage/Conversion Engineering of Graduate School & Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Republic of Korea
3Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, Republic of Korea
4Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea

Tóm tắt

The rapid expansion of soft electronics and actuators necessitates the development of mechanically robust substrates possessing a unique combination of properties: high stretchability, self-healing capabilities, and favorable dielectric characteristics. This study presents a novel composite film comprising an elastic Styrene-Ethylene-Butylene-Styrene (SEBS) matrix and a high dielectric constant Polyvinylidene Fluoride (PVDF) component. A systematic investigation of its mechanical characteristics reveals exceptional stretchability, with a strain of up to 1600%, and showcases remarkable self-healing properties, which manifest upon exposure to a moderate temperature of 70 ℃. The incorporation of SEBS not only imparts mechanical resilience but also contributes to the stabilization of dielectric properties across a wide range of frequencies while the incorporation of PVDF contributes the increase of the output voltages upon pressure. The versatility of this material system holds potential for addressing a wide array of challenges in soft electronics, from conformable wearable technologies to adaptable robotic interfaces.

Tài liệu tham khảo

J.A. Rogers, T. Someya, Y. Huang, Science (80-). 327, 1603 (2010) Y. Zheng, S. Zhang, J.B.-H. Tok, Z. Bao, J. Am. Chem. Soc. 144, 4699 (2022) Y. Hong, M. Su, A.C.S. Appl, Mater. Interfaces 4, 3759 (2012) Y. Yang, M.W. Urban, Chem. Soc. Rev. 42, 7446 (2013) X. Jia, J. Mei, J. Lai, C. Li, X. You, Macromol. Rapid Commun. 37, 952 (2016) O. Galant, S. Bae, M.N. Silberstein, C.E. Diesendruck, Adv. Funct. Mater. 30, 1901806 (2020) K. Chang, H. Jia, S.-Y. Gu, Eur. Polym. J. 112, 822 (2019) Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, C. Huang, Nature 419, 284 (2002) C. Renard, D. Wang, P. Han, S. Xiong, Y. Wen, Z.-M. Dang, RSC Adv. 7, 22900 (2017) G. Gallone, F. Galantini, F. Carpi, Polym. Int. 59, 400 (2010) S. Bhattacharya, R. Hailstone, C.L. Lewis, A.C.S. Appl, Mater. Interfaces 12, 46733 (2020) J. Du, Y. Li, J. Wang, C. Wang, D. Liu, G. Wang, S. Liu, A.C.S. Appl, Mater. Interfaces 12, 26966 (2020) S. Im, S.D. Bu, C.K. Jeong, Korean Inst. Electr. Electron. Mater. Eng. 35, 523 (2022) A. Mokrini, M.A. Huneault, J. Power. Sources 154, 51 (2006) A. Mokrini, M.A. Huneault, P. Gerard, J. Memb. Sci. 283, 74 (2006) N. Seeponkai, J. Wootthikanokkhan, J. Appl. Polym. Sci. 117, 393 (2010) K.K. Kandi, G. Punugupati, P. Madhukar, C.S.P. Rao, J. Korean Ceram. Soc. 59, 565 (2022) I. Sakurada, K. Kaji, J. Polym. Sci. Part C Polym. Symp. 31, 57 (1970) S. Ghosh, D. Khastgir, A.K. Bhowmick, J. Appl. Polym. Sci. 67, 2015 (1998) M. Pantoja, P.-Z. Jian, M. Cakmak, K.A. Cavicchi, A.C.S. Appl, Polym. Mater. 1, 414 (2019) K.W. McKay, W.A. Gros, C.F. Diehl, J. Appl. Polym. Sci. 56, 947 (1995) S. Song, J. Feng, P. Wu, Macromol. Rapid Commun. 32, 1569 (2011) Z. Ding, L. Yuan, Q. Guan, A. Gu, G. Liang, Polymer (Guildf). 147, 170 (2018) A. Lendlein, S. Kelch, Angew. Chemie Int. Ed. 41, 2034 (2002) J. Huang, S. Shian, Z. Suo, D.R. Clarke, Adv. Funct. Mater. 23, 5056 (2013) Y. Guo, L. Liu, Y. Liu, J. Leng, Adv. Intell. Syst. 3, 2000282 (2021) J. Li, Q. Meng, W. Li, Z. Zhang, J. Appl. Polym. Sci. 122, 1659 (2011)