Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells
Tóm tắt
Lupus patients need alternatives to steroids and cytotoxic drugs. We recently found that apigenin, a non-mutagenic dietary flavonoid, can sensitize recurrently activated, normal human T cells to apoptosis by inhibiting nuclear factor-kappa-B (NF-κB)-regulated Bcl-xL, cyclooxygenase 2 (COX-2), and cellular FLICE-like inhibitory protein (c-FLIP) expression. Because sustained immune activation and hyperexpression of COX-2 and c-FLIP contribute to lupus, we treated SNF1 mice that spontaneously develop human lupus-like disease with apigenin. SNF1 mice with established lupus-like disease were injected with 20 mg/kg of apigenin daily and then monitored for development of severe nephritis. Histopathologic changes in kidneys, IgG autoantibodies to nuclear autoantigens in serum and in cultures of splenocytes, along with nucleosome-specific T helper 1 (Th1) and Th17 responses, COX-2 expression, and apoptosis of lupus immune cells were analyzed after apigenin treatment. Apigenin in culture suppressed responses of Th1 and Th17 cells to major lupus autoantigen (nucleosomes) up to 98% and 92%, respectively, and inhibited the ability of lupus B cells to produce IgG class-switched anti-nuclear autoantibodies helped by these Th cells in presence of nucleosomes by up to 82%. Apigenin therapy of SNF1 mice with established lupus suppressed serum levels of pathogenic autoantibodies to nuclear antigens up to 97% and markedly delayed development of severe glomerulonephritis. Apigenin downregulated COX-2 expression in lupus T cells, B cells, and antigen-presenting cells (APCs) and caused their apoptosis. Autoantigen presentation and Th17-inducing cytokine production by dendritic cells were more sensitive to the inhibitory effect of apigenin in culture, as evident at 0.3 to 3 μM, compared with concentrations (10 to 100 μM) required for inducing apoptosis. Apigenin inhibits autoantigen-presenting and stimulatory functions of APCs necessary for the activation and expansion of autoreactive Th1 and Th17 cells and B cells in lupus. Apigenin also causes apoptosis of hyperactive lupus APCs and T and B cells, probably by inhibiting expression of NF-κB-regulated anti-apoptotic molecules, especially COX-2 and c-FLIP, which are persistently hyperexpressed by lupus immune cells. Increasing the bioavailability of dietary plant-derived COX-2 and NF-κB inhibitors, such as apigenin, could be valuable for suppressing inflammation in lupus and other Th17-mediated diseases like rheumatoid arthritis, Crohn disease, and psoriasis and in prevention of inflammation-based tumors overexpressing COX-2 (colon, breast).
Tài liệu tham khảo
Rahman A, Isenberg DA: Systemic lupus erythematosus. N Engl J Med. 2008, 358: 929-939. 10.1056/NEJMra071297.
Kotzin BL: Systemic lupus erythematosus. Cell. 1996, 85: 303-306. 10.1016/S0092-8674(00)81108-3.
Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK: Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity. 1998, 8: 615-623. 10.1016/S1074-7613(00)80566-X.
Xu L, Zhang L, Yi Y, Kang HK, Datta SK: Human lupus T cells resist inactivation and escape death by upregulating COX-2. Nat Med. 2004, 10: 411-415. 10.1038/nm1005.
Xu L, Zhang L, Bertucci AM, Pope RM, Datta SK: Apigenin, a dietary flavonoid, sensitizes human T cells for activation-induced cell death by inhibiting PKB/Akt and NF-kappaB activation pathway. Immunol Lett. 2008, 121: 74-83. 10.1016/j.imlet.2008.08.004.
Zhang L, Bertucci AM, Smith KA, Xu L, Datta SK: Hyperexpression of cyclooxygenase 2 in the lupus immune system and effect of cyclooxygenase 2 inhibitor diet therapy in a murine model of systemic lupus erythematosus. Arthritis Rheum. 2007, 56: 4132-4141. 10.1002/art.23054.
Yang P, Zhang Y, Ping L, Gao XM: Apoptosis of murine lupus T cells induced by the selective cyclooxygenase-2 inhibitor celecoxib: molecular mechanisms and therapeutic potential. Int Immunopharmacol. 2007, 7: 1414-1421. 10.1016/j.intimp.2007.06.013.
Wallace DJ: Celecoxib for lupus. Arthritis Rheum. 2008, 58: 2923-10.1002/art.23808.
Tong X, Van Dross RT, Abu-Yousif A, Morrison AR, Pelling JC: Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition. Mol Cell Biol. 2007, 27: 283-296. 10.1128/MCB.01282-06.
Woodman OL, Chan E: Vascular and anti-oxidant actions of flavonols and flavones. Clin Exp Pharmacol Physiol. 2004, 31: 786-790. 10.1111/j.1440-1681.2004.04072.x.
Olszanecki R, Gebska A, Kozlovski VI, Gryglewski RJ: Flavonoids and nitric oxide synthase. J Physiol Pharmacol. 2002, 53: 571-584.
Guerrero JA, Lozano ML, Castillo J, Benavente-Garcia O, Vicente V, Rivera J: Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb Haemost. 2005, 3: 369-376. 10.1111/j.1538-7836.2004.01099.x.
Zhang YH, Park YS, Kim TJ, Fang LH, Ahn HY, Hong JT, Kim Y, Lee CK, Yun YP: Endothelium-dependent vasorelaxant and antiproliferative effects of apigenin. Gen Pharmacol. 2000, 35: 341-347.
Datta SK, Schwartz RS: Genetics of expression of xenotropic virus and autoimmunity in NZB mice. Nature. 1976, 263: 412-415. 10.1038/263412b0.
Datta SK, McConahey PJ, Manny N, Theofilopoulos AN, Dixon FJ, Schwartz RS: Genetic studies of autoimmunity and retrovirus expression in crosses of New Zealand black mice. II. The viral envelope glycoprotein gp70. J Exp Med. 1978, 147: 872-881. 10.1084/jem.147.3.872.
Mohan C, Adams S, Stanik V, Datta SK: Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med. 1993, 177: 1367-1381. 10.1084/jem.177.5.1367.
Kaliyaperumal A, Michaels MA, Datta SK: Naturally processed chromatin peptides reveal a major autoepitope that primes pathogenic T and B cells of lupus. J Immunol. 2002, 168: 2530-2537.
Kang HK, Liu M, Datta SK: Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol. 2007, 178: 7849-7858.
Kaliyaperumal A, Michaels MA, Datta SK: Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol. 1999, 162: 5775-5783.
Singh RR, Saxena V, Zang S, Li L, Finkelman FD, Witte DP, Jacob CO: Differential contribution of IL-4 and STAT6 vs STAT4 to the development of lupus nephritis. J Immunol. 2003, 170: 4818-4825.
Schiffer L, Sinha J, Wang X, Huang W, von Gersdorff G, Schiffer M, Madaio MP, Davidson A: Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol. 2003, 171: 489-497.
Kaliyaperumal A, Mohan C, Wu W, Datta SK: Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med. 1996, 183: 2459-2469. 10.1084/jem.183.6.2459.
Singh JP, Selvendiran K, Banu SM, Padmavathi R, Sakthisekaran D: Protective role of Apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in Wistar albino rats. Phytomedicine. 2004, 11: 309-314. 10.1078/0944711041495254.
Wang IK, Lin-Shiau SY, Lin JK: Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999, 35: 1517-1525. 10.1016/S0959-8049(99)00168-9.
Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI: Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem Pharmacol. 2006, 72: 681-692. 10.1016/j.bcp.2006.06.010.
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006, 441: 235-238. 10.1038/nature04753.
Marshak-Rothstein A, Rifkin IR: Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol. 2007, 25: 419-441. 10.1146/annurev.immunol.22.012703.104514.
Kang HK, Michaels MA, Berner BR, Datta SK: Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol. 2005, 174: 3247-3255.
Lu L, Kaliyaperumal A, Boumpas DT, Datta SK: Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest. 1999, 104: 345-355. 10.1172/JCI6801.
Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, Yi J, Guentert T, Tousson A, Stanus AL, Le TV, Lorenz RG, Xu H, Kolls JK, Carter RH, Chaplin DD, Williams RW, Mountz JD: Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008, 9: 166-175. 10.1038/ni1552.
Haas C, Ryffel B, Le Hir M: IFN-gamma receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB × NZW)F1 mice. J Immunol. 1998, 160: 3713-3718.
Balomenos D, Rumold R, Theofilopoulos AN: Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest. 1998, 101: 364-371. 10.1172/JCI750.
Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW: Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol. 2008, 127: 385-393. 10.1016/j.clim.2008.01.019.
Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, Kyttaris VC, Juang YT, Tsokos GC: Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008, 181: 8761-8766.
Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI: Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol. 2007, 179: 7121-7127.
Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK: Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999, 20: 1945-1952. 10.1093/carcin/20.10.1945.
Okamoto A, Fujio K, van Rooijen N, Tsuno NH, Takahashi K, Tsurui H, Hirose S, Elkon KB, Yamamoto K: Splenic phagocytes promote responses to nucleosomes in (NZB × NZW) F1 mice. J Immunol. 2008, 181: 5264-5271.
Ronnefarth VM, Erbacher AI, Lamkemeyer T, Madlung J, Nordheim A, Rammensee HG, Decker P: TLR2/TLR4-independent neutrophil activation and recruitment upon endocytosis of nucleosomes reveals a new pathway of innate immunity in systemic lupus erythematosus. J Immunol. 2006, 177: 7740-7749.
Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J: Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science. 2001, 294: 1540-1543. 10.1126/science.1064890.
Kalled SL, Cutler AH, Burkly LC: Apoptosis and altered dendritic cell homeostasis in lupus nephritis are limited by anti-CD154 treatment. J Immunol. 2001, 167: 1740-1747.
Zhu J, Liu X, Xie C, Yan M, Yu Y, Sobel ES, Wakeland EK, Mohan C: T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. J Clin Invest. 2005, 115: 1869-1878. 10.1172/JCI23049.
Wan S, Xia C, Morel L: IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J Immunol. 2007, 178: 271-279.
Holdsworth SR, Tipping PG: Leukocytes in glomerular injury. Semin Immunopathol. 2007, 29: 355-374. 10.1007/s00281-007-0097-9.
Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, Dragsted LO: Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999, 81: 447-455.
Lahey TP, Rajadhyasksha VJ: Inhibition by 3-deoxyflavonoids of T-lymphocyte activation and therapies related thereto. US patent 6,774,142. 2004
Tao X, Fan F, Hoffmann V, Gao CY, Longo NS, Zerfas P, Lipsky PE: Effective therapy for nephritis in (NZB × NZW)F1 mice with triptolide and tripdiolide, the principal active components of the Chinese herbal remedy Tripterygium wilfordii Hook F. Arthritis Rheum. 2008, 58: 1774-1783. 10.1002/art.23513.