Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspects, challenges and perspectives

Elsevier BV - Tập 340 - Trang 125626 - 2021
Juan Camilo Solarte-Toro1, Carlos Ariel Cardona Alzate1
1Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia

Tài liệu tham khảo

Agama-Acevedo, 2016, Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound, CYTA - J. Food., 10.1080/19476337.2015.1055306 Alexander, 2017, Losses, inefficiencies and waste in the global food system, Agric. Syst., 153, 190, 10.1016/j.agsy.2017.01.014 Alonso-Gómez, 2020, Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material, Food Bioprod. Process., 121, 10.1016/j.fbp.2020.01.005 Blazev, 2015 Antonczak, 2009, Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism, Phys. Chem. Chem. Phys., 11, 1491, 10.1039/b814588a Aristizábal-Marulanda, 2021, Environmental assessment of energy-driven biorefineries: the case of the coffee cut-stems (CCS) in Colombia, Int. J. Life Cycle Assess., 26, 290, 10.1007/s11367-020-01855-0 Aristizábal-Marulanda, 2020, Economic and social assessment of biorefineries: the case of coffee cut-stems (CCS) in Colombia, Bioresour. Technol. Reports, 9, 10.1016/j.biteb.2020.100397 Asadikia, 2021, Systematic prioritisation of SDGs: machine learning approach, World Dev., 140, 10.1016/j.worlddev.2020.105269 Baum, 2015, Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review, Sci. Hortic. (Amsterdam), 187, 131, 10.1016/j.scienta.2015.03.002 Bautista, 2016, Biodiesel-triple bottom line (TBL): A new hierarchical sustainability assessment framework of principles criteria & indicators (PC&I) for biodiesel production, Part II-validation. Ecol. Indic., 69, 803, 10.1016/j.ecolind.2016.04.046 Beltrán-Ramírez, F., Orona-Tamayo, D., Cornejo-Corona, I., Luz Nicacio González-Cervantes, J., de Jesús Esparza-Claudio, J., Quintana-Rodríguez, E., 2019. Agro-industrial waste revalorization: the growing biorefinery, in: biomass for bioenergy - recent trends and future challenges. IntechOpen. https://doi.org/10.5772/intechopen.83569. Brandão, 2021, Circular bioeconomy strategies: from scienti fi c research to commercially viable products, J. Clean. Prod., 295, 10.1016/j.jclepro.2021.126407 Bruins, 2012, Small-scale processing of biomass for biorefinery, Biofuels Bioprod. Biorefining, 6, 135, 10.1002/bbb.1319 Brundtland, G.H., 1991. Our Common Future, in: Kamal, M., Biswas, A. (Eds.), Earth and US: Population - Resources - Environment - Development. Butterworth-Heinemann, Oxford, pp. 29–32. Caldeira, 2020, Sustainability of food waste biorefinery: a review on valorisation pathways, techno-economic constraints, and environmental assessment, Bioresour. Technol., 312, 10.1016/j.biortech.2020.123575 Cardona-Alzate, C.A., Moncada Botero, J., Aristizábal-Marulanda, V., 2019. Biorefineries - design and analysis. CRC Press, Taylor and Francis Group. Cardona Alzate, 2018, Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries, Catal. Today, 302, 61, 10.1016/j.cattod.2017.09.034 Cherubini, 2009, Toward a common classifi cation approach for biorefi nery systems, Biofuels Bioprod. biorefining, 3, 534, 10.1002/bbb.172 Ciroth, A., Finkbeiner, M., Hildenbrand, J., Klöpffer, W., Mazijn, B., Prakash, S., Sonnemann, G., Traverso, M., Ugaya, C., Valdivia, S., Vickery-Niederman, G., 2011. Towards a life cycle sustainability assessment: making products informed choices on products. UNEP/SETAC Life Cycle Initiative. Costa, 2019, A systematic review of life cycle sustainability assessment: current state, methodological challenges, and implementation issues, Sci. Total Environ., 686, 774, 10.1016/j.scitotenv.2019.05.435 Cristóbal, 2018, Techno-economic and profitability analysis of food waste biorefineries at European level, Bioresour. Technol., 259, 244, 10.1016/j.biortech.2018.03.016 Dang, 2020, Tracking the sustainable development goals: emerging measurement challenges and further reflections, World Dev., 127, 10.1016/j.worlddev.2019.05.024 Diep, 2012, Biorefinery : concepts, current status, and development trends, Int. J. Biomass Renewables, 2, 1 Dragone, 2020, Bioresource Technology Innovation and strategic orientations for the development of advanced biore fi neries, Bioresour. Technol., 302, 10.1016/j.biortech.2020.122847 Ecopetrol Reporte de resultados tercer trimestre de 2018: Por la senda del crecimiento rentable y sostenible 2018. F. Eisfeldt A. Ciroth PSILCA - a product social impact life cycle assessment database 2018. Esenttia, 2014. Esenttia sostenible: Informe de sostenibilidad 2014. Ferreira, 2021, Trichoderma as biological control agent: scope and prospects to improve efficacy, World J. Microbiol. Biotechnol., 37, 10.1007/s11274-021-03058-7 Filho, 2021, A framework for the implementation of the sustainable development goals in university programmes, J. Clean. Prod., 299, 1 Global Syngas Technologies Council (GSTC), 2019. Syngas production [WWW Document]. Heimann, 2019, Bioeconomy and SDGs: does the bioeconomy support the achievement of the SDGs?, Earth’s Futur., 7, 43, 10.1029/2018EF001014 IChemE, The Sustainability Metrics: sustainable development progress metrics recommended for use in process industries 2002. I Manuelita Ingenio Manuelita: Informe de sostenibilidad 2014 2013 2014. Johnson, 2018, Estimating on-farm food loss at the field level: a methodology and applied case study on a North Carolina farm, Resour. Conserv. Recycl., 137, 243, 10.1016/j.resconrec.2018.05.017 Karabin, 2014, Biotransformations and biological activities of hop flavonoids, Biotechnol. Adv. Koberg, 2019, A systematic review of sustainable supply chain management in global supply chains, J. Clean. Prod., 207, 1084, 10.1016/j.jclepro.2018.10.033 Kolfschoten, 2014, Opportunities for small-scale biorefi nery for production of sugar and ethanol in the Netherlands, Biofuels Bioprod. Biorefining, 8, 475, 10.1002/bbb.1487 Korhonen, 2018, Circular economy: the concept and its limitations, Ecol. Econ., 143, 37, 10.1016/j.ecolecon.2017.06.041 Laurett, 2021, Sustainable development in agriculture and its antecedents, barriers and consequences – an exploratory study, Sustain. Prod. Consum., 27, 298, 10.1016/j.spc.2020.10.032 Li, 2020, Biochar phosphorus fertilizer effects on soil phosphorus availability, Chemosphere, 244, 10.1016/j.chemosphere.2019.125471 Lo, 2021, Techno-economic analysis for biomass supply chain: a state-of-the-art review, Renew. Sustain. Energy Rev., 135, 10.1016/j.rser.2020.110164 Lucas, P., Ludwig, K., Kok, M., Kruitwagen, S., 2016. Sustainable development goals in the netherlands: building blocks for environmental policy 2030. The Hague. Mahbub, 2019, A life cycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass, Int. J. Life Cycle Assess., 24, 881, 10.1007/s11367-018-1529-6 Moncada, 2016, Design strategies of sustainable biorefineries, Biochem. Eng. J., 116, 122, 10.1016/j.bej.2016.06.009 Moncada, 2018, Techno-economic and ex-ante environmental assessment of C6 sugars production from spruce and corn. comparison of organosolv and wet milling technologies, J. Clean. Prod., 170, 610, 10.1016/j.jclepro.2017.09.195 Murthy, G., 2019. Systems analysis frameworks for biorefineries, in: Pandey, A., Larroche, C., Ricke, S. (Eds.), Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels. Academic Press, pp. 77–92. Naveenkumar, 2021, Process optimization, green chemistry balance and technoeconomic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst, Bioresour. Technol., 320, 10.1016/j.biortech.2020.124347 O’Sullivan, 2020, The social and environmental influences of population growth rate and demographic pressure deserve greater attention in ecological economics, Ecol. Econ., 172 Ortiz-Sanchez, M., Solarte-Toro, J.C., Orrego-Alzate, C.E., Acosta-Medina, C.D., Cardona-Alzate, C.A., 2020. Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-020-00627-y. Ortiz, 2020, Sustainable management of peel waste in the small-scale orange juice industries: a Colombian case study, J. Clean. Prod., 265, 10.1016/j.jclepro.2020.121587 Perea-Moreno, 2016, Fuel properties of avocado stone, Fuel, 186, 358, 10.1016/j.fuel.2016.08.101 Permal, 2020, Converting industrial organic waste from the cold-pressed avocado oil production line into a potential food preservative, Food Chem., 306, 10.1016/j.foodchem.2019.125635 Posada, 2013, Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products, Bioresour. Technol., 135, 490, 10.1016/j.biortech.2012.09.058 Poveda-Giraldo, 2021, The potential use of lignin as a platform product in biorefineries: a review, Renew. Sustain. Energy Rev., 138, 10.1016/j.rser.2020.110688 Prasara-A, 2016, Sustainable utilization of rice husk ash from power plants: a review, J. Clean. Prod., 167, 1020, 10.1016/j.jclepro.2016.11.042 Qin, 2021, Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy, Bioresour. Technol., 321, 10.1016/j.biortech.2020.124496 Serna-Loaiza, 2018, Potential raw materials for biorefineries to ensure food security: the Cocoyam case, Ind. Crops Prod., 126, 92, 10.1016/j.indcrop.2018.10.005 Solarte-Toro, 2021, Thermochemical processing of woody biomass: a review focused on energy-driven applications and catalytic upgrading, Renew. Sustain. Energy Rev., 136, 10.1016/j.rser.2020.110376 Solarte-toro, 2021, Perspectives of the sustainability assessment of biorefineries, Chem. Eng. Trans., 83, 307 Solarte-Toro, 2018, Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material, Electron. J. Biotechnol., 33, 52, 10.1016/j.ejbt.2018.03.005 Spence, 2019, Evaluation of anaerobic digestibility of energy crops and agricultural by-products, Bioresour. Technol. Reports, 5, 243, 10.1016/j.biteb.2018.11.004 Ubando, 2020, Biorefineries in circular bioeconomy: a comprehensive review, Bioresour. Technol., 299, 10.1016/j.biortech.2019.122585 Urmetzer, 2018, Exploring the dedicated knowledge base of a transformation towards a sustainable bioeconomy, Sustainability, 10, 1694, 10.3390/su10061694 Visser, R., Van Ree, R., 2016. Small-scale biorefining. Watanabe, 2020, Process simulation of renewable electricity from sugarcane straw: techno-economic assessment of retrofit scenarios in Brazil, J. Clean. Prod., 254, 10.1016/j.jclepro.2020.120081