On the Extension of Onsager’s Conjecture for General Conservation Laws
Tóm tắt
The aim of this work is to extend and prove the Onsager conjecture for a class of conservation laws that possess generalized entropy. One of the main findings of this work is the “universality” of the Onsager exponent,
$$\alpha > 1/3$$
, concerning the regularity of the solutions, say in
$$C^{0,\alpha }$$
, that guarantees the conservation of the generalized entropy, regardless of the structure of the genuine nonlinearity in the underlying system.
Tài liệu tham khảo
Akramov, I., Wiedemann, E.: Renormalization of active scalar equations. Nonlinear Anal. (2018). arXiv:1805.05683
Bardos, C., Gwiazda, P., Świerczewska-Gwiazda, A., Titi, E. S., Wiedemann, E.: In progress (2018)
Bardos, C., Titi, E.S.: Loss of smoothness and energy conserving rough weak solutions for the \(3d\) Euler equations. Discrete Contin. Dyn. Syst. Ser. S 3(2), 185–197 (2010)
Bardos, C., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul. 14, 42–76 (2013)
Bardos, C., Titi, E.S.: Onsager’s Conjecture for the incompressible Euler equations in bounded domains. Arch. Ration. Mech. Anal. 228(1), 197–207 (2018)
Bardos, C., Titi, E.S., Wiedemann, E.: Onsager’s conjecture with physical Boundaries and an application to the vanishing viscosity limit. arXiv:1803.04939
Buckmaster, T., De Lellis, C., Székelyhidi Jr., L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. (2018). https://doi.org/10.1002/cpa.21781
Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233 (2008)
Constantin, P., Weinan, E., Titi, E.S.: Onsager’s Conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165, 207–209 (1994)
Conti, S., Lellis, C. De., Szkelyhidi, L.: h-principle and rigidity for \(C^{1,\alpha }\) isometric embeddings. In: Nonlinear Partial Differential Equations, 83116, Abel Symposium, vol. 7. Springer, Heidelberg (2012)
Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, New York (2000)
Drivas, T.D., Eyink, G.L.: An Onsager singularity theorem for turbulent solutions of compressible Euler equations (2017). arXiv:1704.03532
Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)
Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer. Phys. D 78, 222–240 (1994)
Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Regularity and energy conservation for the compressible Euler equations. Arch. Ration. Mech. Anal. 223, 1375–1395 (2017)
Gwiazda, P., Michálek, M., Świerczewska-Gwiazda, A.: A note on weak solutions of conservation laws and energy/entropy conservation. Arch. Ration. Mech. Anal. 229, 1223–1238 (2018)
Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188, 1–93 (2018)
Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 6, 279–287 (1949)
Robinson, J.C., Rodrigo, J.L., Skipper, J.W.D.: Energy conservation in the 3D Euler equations on \({\mathbb{T}}^2\times {\mathbb{R}}_+\) (2017). arXiv:1611.00181
Yu, C.: Energy conservation for the weak solutions of the compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 225(3), 1073–1087 (2017)