The role of polyethylene glycol on the microstructural, magnetic and specific absorption rate in thermoablation properties of Mn-Zn ferrite nanoparticles by sol–gel protocol
Tài liệu tham khảo
Zargar, 2017, Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications, Ceram. Int., 43, 5794, 10.1016/j.ceramint.2017.01.127
Sawant, 2016, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells, J. Magn. Magn. Mater., 417, 222, 10.1016/j.jmmm.2016.05.061
Hoque, 2016, Synthesis and characterization of Zinc ferrite nanoparticles and its biomedical applications, Mater. Lett., 162, 60, 10.1016/j.matlet.2015.09.066
Ahmed, 2020, Structural, magnetic and dielectric characteristics of optically tuned Fe doped ZrO2 nanoparticles with visible light driven photocatalytic activity, Mater. Chem. Phys., 10.1016/j.matchemphys.2020.122999
Zhang, 2017, Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent, ACS Nano, 11, 3614, 10.1021/acsnano.6b07684
Sharifi, 2012, Ferrite-based magnetic nanofluids used in hyperthermia applications, J. Magn. Magn. Mater., 324, 903, 10.1016/j.jmmm.2011.10.017
Madubuonu, 2019, Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study, J. Photochem. Photobiol. B, 199, 10.1016/j.jphotobiol.2019.111601
Ahmadian-Fard-Fini, 2019, Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material, J. Composite B, 161, 564, 10.1016/j.compositesb.2018.12.131
Madubuonu, 2020, Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity, Appl. Phys. A, 176, 72, 10.1007/s00339-019-3249-6
Aisida, 2020, Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications, Appl. Nanosci., 10, 305, 10.1007/s13204-019-01099-x
Aisida, 2019, Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium, Mater. Chem. Phys., 237, 10.1016/j.matchemphys.2019.121859
Aisida, 2019, Biosynthesis of silver nanoparticles using bitter leave (Veronica amygdalina) for antibacterial activities, Surf. Interfaces, 17
Naidu, 2017, Microwave processed bulk and nano NiMg ferrites: a comparative study on X-band electromagnetic interference shielding properties, Mater. Chem. Phys., 187, 164, 10.1016/j.matchemphys.2016.11.062
Thanigai, 2016, Novel polyvinyl alcohol polymer based nanostructure with ferrites co-doped with nickel and cobalt ions for magneto-sensor application, Polym. Int., 65, 1482, 10.1002/pi.5242
Abraham, 2017, Enhanced Opto-Magneto Properties of Ni x Mg1–x Fe2O4 (0.0 ≤ x ≤ 1.0) Ferrites Nano-Catalysts, J. Nanoelectron. Optoelectron., 12, 1326, 10.1166/jno.2017.2299
Manikandan, 2014, Nanoflower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin films: Structural, optical and electronic properties, Mater. Lett., 131, 225, 10.1016/j.matlet.2014.06.008
Shah, 2013, Magnetic, optical and structural studies on Ag doped ZnO nanoparticles, J. Mater. Sci.: Mater. Electron., 24, 2302
R. Rajendran, R. Muralidharan, R. S. Gopalakrishnan, M. Chellamuthu, S. U. Ponnusamy and E. Manikandan, “Controllable Synthesis of Single‐Crystalline Fe3O4 Nanorice by a One‐Pot, Surfactant‐Assisted Hydrothermal Method and Its Properties,” European Journal of Inorganic Chemistry 2011 (35), (2011) 5384-5389, vol. 2011, no. 35, pp. 5384-5389, 2011.
Satalkar, 2017, On the role of cationic distribution in determining magnetic properties of Zn 0.7-xNi xMg 0.2 Cu 0.1 Fe 2O4 nano ferrite, Mater. Res. Bull., 91, 14, 10.1016/j.materresbull.2017.03.021
Brabers, 1995, Progress in spinel ferrite research, Handb. Magn. Mater., 8, 189, 10.1016/S1567-2719(05)80032-0
Motahari, 2014, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment, RSC Adv., 4, 27654, 10.1039/c4ra02697g
Sasikala, 2017, Transition metal titanium (Ti) doped LaFeO3 nanoparticles for enhanced optical structural and magnetic properties, J. Alloy. Compd., 712, 870, 10.1016/j.jallcom.2017.04.133
Karaaga, 2019, Superparamagnetic zinc ferrite: A correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process, J. Magn. Magn. Mater., 474, 282, 10.1016/j.jmmm.2018.11.037
Aisida, 2020, Calcination Effect on the Photoluminescence, Optical, Structural, and Magnetic Properties of Polyvinyl Alcohol Doped ZnFe 2 O 4 Nanoparticles, J. Macromol. Sci. Part B, 59, 295, 10.1080/00222348.2020.1713519
Okoro, 2019, Thermal treated sysnthesis and characterization of polyethylene glycol (PEG) mediated Zinc ferrite nanoparticles, Surf. Interface, 16, 127, 10.1016/j.surfin.2019.05.004
Okoroh, 2019, Properties of zinc ferrite nanoparticles due to PVP mediation and annealing at 500 °C, Adv. Nanopart., 8, 36, 10.4236/anp.2019.82003
Israra, 2020, A unique ZnFe2O4/graphene nanoplatelets nanocomposite for electrochemical energy storage and efficient visible light driven catalysis for the degradation of organic noxious in wastewater, J. Phys. Chem. Solids, 140
Grasset, 2002, Langmuir, 18, 8209, 10.1021/la020322b
Samavati, 2017, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method, Particuology, 30, 158, 10.1016/j.partic.2016.06.003
Mahmoud, 2014, A comprehensive overview of the structure and comparison of magnetic properties of nanocrystalline synthesized by a thermal treatment method, J. Phys. Chem. Solids, 75, 315, 10.1016/j.jpcs.2013.11.004
Lucas, 2011, Magnetic properties of bio-synthesized zinc ferrite nanoparticles, J. Magn. Magn. Mater., 323, 3043, 10.1016/j.jmmm.2011.06.049
Ahmadian-Fard-Fini, 2020, Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions, Carbohydr. Polym., 229, 10.1016/j.carbpol.2019.115428
Mousavi-Kamazani, 2016, Facile and Novel Chemical Synthesis, Characterization, and Formation Mechanism of Copper Sulfide (Cu2S, Cu2S/CuS, CuS) Nanostructures for Increasing the Efficiency of Solar Cells, J. Phys. Chem. C, 120, 2096, 10.1021/acs.jpcc.5b11566
Salavati-Niasari, 2007, Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N, N′-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM), J. Mol. Catal. A: Chem., 261, 147, 10.1016/j.molcata.2006.07.048
Arul, 2017, Enhanced magnetic properties of polymer-magnetic nanostructures synthesized by ultrasonication, J. Alloy. Compd., 720, 395, 10.1016/j.jallcom.2017.05.146
Gao, 2018, Structure and magnetic properties correlated with cation distribution ofNi0.5-xMoxZn0.5Fe2O4ferrites prepared by sol-gel auto-combustion method, Ceram. Int., 44, 20148, 10.1016/j.ceramint.2018.07.308
M. george, A. M. John, S. S. Nair, P. A. Joy and M. R. Anantharaman, “Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders,” J. Magn. Magn. Mater., vol. 302, pp. 190-195, 2006.
A. Makridis, K. Topouridou, M. Tziomaki, D. Sakellari, S. K, M. Angelakeris, M. P. Yavropoulou, J. G. Yovos and O. Kalogirou, “In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents,” J. Mater. Chem. B., vol. 2, pp. 8390-8398, 2014.
Vamvakidis, 2013, Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization, J. Nanopart. Res., 15, 1743, 10.1007/s11051-013-1743-x
Salavati-Niasari, 2006, Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil)acetylacetonato manganese(III)]) nanocomposite materials (HGNM), Microporous Mesoporous Mater., 95, 248, 10.1016/j.micromeso.2006.05.025
Salavati-Niasari, 2006, Host (nanocavity of zeolite-Y)–guest (tetraaza[14]annulene copper(II) complexes) nanocomposite materials: Synthesis, characterization and liquid phase oxidation of benzyl alcohol, J. Mol. Catal. A: Chem., 245, 192, 10.1016/j.molcata.2005.09.046
Silambarasu, 2018, Comparative Study of Structural, Morphological, Magneto-Optical and Photo-Catalytic Properties of Magnetically Reusable Spinel MnFe2O4 Nano-Catalysts, J. Nanosci. Nanotechnol., 18, 3523, 10.1166/jnn.2018.14669
Aisida, 2019, Influence of PVA, PVP and PEG doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method, Physica B, 571, 130, 10.1016/j.physb.2019.07.001
Aisida, 2019, Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity, J. Polym. Res., 26, 225, 10.1007/s10965-019-1897-z
Aisida, 2020, Effect of calcination on the microstructural and magnetic properties of PVA, PVP and PEG assisted zinc ferrite nanoparticles, Physica B, 579, 10.1016/j.physb.2019.411907
Aisida, 2020, Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications, Eur. Polym. J., 122, 10.1016/j.eurpolymj.2019.109371
Chuncheng, 2015, Fabrication and hyperthermia effect of magnetic functional fluids based on amorphous particles, Appl. Surf. Sci., 330, 216, 10.1016/j.apsusc.2015.01.023
Van, 2004, Radiotherapy and hyperthermia in the treatment of patients with locally advanced prostate cancer. Preliminary results, BJU Int., 93, 36, 10.1111/j.1464-410X.2004.04551.x
Liu, 2011, Preparation, characterization and MRI application of carboxymethyl dextran coated magnetic nanoparticles, Appl. Surf. Sci., 257, 6711, 10.1016/j.apsusc.2011.02.110
Mocherla, 2014, Effect of microstrain on the magnetic properties of BiFeO3 nanoparticles, Appl. Phys. Lett., 105, 10.1063/1.4897143
Cullity, 1978, 102
Khan, 2013, Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity, Spectrochimica Acta Part A: Molecular and Biomolecular, 109, 313, 10.1016/j.saa.2013.03.011
Sagar, 2012, Structure refinement, cation site location, spectral and elastic properties of Zn2+ substituted NiFe2O4, J. Mol. Struct., 1024, 77, 10.1016/j.molstruc.2012.05.014
Tatarchuk, 2018, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles, J. Alloy. Compd., 731, 1256, 10.1016/j.jallcom.2017.10.103
Abbad, 2013, The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique, J. Alloy. Compd., 550, 63, 10.1016/j.jallcom.2012.09.076
Arsalani, 2010, Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent, Express Polym. Lett., 4, 329, 10.3144/expresspolymlett.2010.42
Kambale, 2009, Effect of Cobalt Substitution on Structural, Magnetic and Electric Properties of Nickel Ferrite, J. Alloy. Compd., 478, 599, 10.1016/j.jallcom.2008.11.101
Grant, 2018, The effect of different Fe concentrations on the structural and magnetic properties of near-surface superparamagnetic Ni1− xFex nanoparticles in SiO2 made by dual low energy, J. Magn. Magn. Mater., 473, 125
Monrudee, 2011, Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion, J. Magn. Magn. Mater., 323, 708, 10.1016/j.jmmm.2010.10.027
Doaga, 2013, Synthesis and characterizations of manganese ferrites for hyperthermia applications, Mater. Chem. Phys., 143, 305, 10.1016/j.matchemphys.2013.08.066
Leea, 2007, Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application, J. Magn. Magn. Mater., 310, 2868, 10.1016/j.jmmm.2006.11.080
Rodriguez, 2017, Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method, J. Magn. Mag Mater., 427, 268, 10.1016/j.jmmm.2016.10.078
Dong-Hyun, 2008, Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia, J. Magn. Magn. Mater., 320, 2390, 10.1016/j.jmmm.2008.05.023
Deatsch, 2014, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. Magn. Mater., 354, 163, 10.1016/j.jmmm.2013.11.006
Kombaiah, 2017, Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies, J. Phys. Chem. Solids, 115, 162, 10.1016/j.jpcs.2017.12.024
Matsuda, 2015, Synthesis of cobalt ferrite nanoparticles using spermine and their effect on death in human breast cancer cells under an alternating magnetic field, Electrochim. Acta, 183, 153, 10.1016/j.electacta.2015.06.108
El-Sayed, 2017, Influence of the magnetic dead layer thickness of Mg-Zn ferrite nanoparticle on their magnetic properties, J. Magn. Magn. Mater., 424, 226, 10.1016/j.jmmm.2016.10.049