Extra benefit of microalgae in raw piggery wastewater treatment: pathogen reduction

Sang‐Ah Lee1, Minsik Kim1, Hee-Sik Kim1, Chi‐Yong Ahn1
1Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea

Tóm tắt

Abstract Background Monitoring microbial communities especially focused on pathogens in newly developed wastewater treatment systems is recommended for public health. Thus, we investigated the microbial community shift in a pilot-scale microalgal treatment system for piggery wastewater. Results Microalgae showed reasonable removal efficiencies for COD and ammonia, resulting in higher transparency of the final effluent. Metagenome and microbial diversity analyses showed that heterotrophic microalgal cultivation barely changed the bacterial community; however, the mixotrophic microalgal cultivation induced a sudden change. In addition, an evaluation of risk groups (RGs) of bacteria showed that raw piggery wastewater included abundant pathogens, and the microalgal treatment of the raw piggery wastewater decreased the RG2 pathogens by 63%. However, co-cultivation of microalgae and the most dominant RG2 pathogen, Oligella, showed no direct effects between them. Conclusions Thus, a microbial interaction network was constructed to elucidate algae-bacteria interrelationships, and the decrease in Oligella was indirectly connected with microalgal growth via Brevundimonas, Sphingopyxis, and Stenotrophomonas. In a validation test, 3 among 4 connecting bacterial strains exhibited inhibition zones against Oligella. Therefore, we showed that microalgal wastewater treatment causes a decrease in RG2 bacteria, which is an indirect impact of microalgae associated with bacteria. Graphical Abstract

Từ khóa


Tài liệu tham khảo

Bogler A, Packman A, Furman A, Gross A, Kushmaro A, Ronen A, et al. Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nat Sustain. 2020;3(12):981–90.

Tortajada C, van Rensburg P. Drink more recycled wastewater. Nature. 2020;577:26–8.

Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G, Navarrete KM, et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature. 2016;533(7602):212–6.

Guo J, Li J, Chen H, Bond PL, Yuan Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017;123:468–78.

Manoli K, Sarathy S, Maffettone R, Santoro D. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. Water Res. 2019;153:251–62.

Li D, Yao Y, Sun H, Wang Y, Pu J, Calderón R, et al. Artificial sweeteners in pig feed: A worldwide survey and case study in pig farms in Tianjin, China. Environ Sci Technol. 2020;54(7):4059–67.

Hu Y, Cheng H, Tao S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ Int. 2017;107:111–30.

Hu H, Li X, Wu S, Yang C. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. Bioresour Technol. 2020;315:123809.

Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367(6476):397–400.

Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Mac Dowell N, et al. The technological and economic prospects for CO2 utilization and removal. Nature. 2019;575(7781):87–97.

Lee S-A, Lee N, Oh H-M, Ahn C-Y. Stepwise treatment of undiluted raw piggery wastewater, using three microalgal species adapted to high ammonia. Chemosphere. 2021;263:127934.

Chen C-Y, Kuo E-W, Nagarajan D, Dong C-D, Lee D-J, Varjani S, et al. Semi-batch cultivation of Chlorella sorokiniana AK-1 with dual carriers for the effective treatment of full strength piggery wastewater treatment. Bioresour Technol. 2021;326:124773.

Ansa E, Lubberding H, Gijzen H. The effect of algal biomass on the removal of faecal coliform from domestic wastewater. Appl Water Sci. 2012;2(2):87–94.

Slompo NDM, Quartaroli L, Fernandes TV, da Silva GHR, Daniel LA. Nutrient and pathogen removal from anaerobically treated black water by microalgae. J Environ Manage. 2020;268:110693.

Lian J, Wijffels RH, Smidt H, Sipkema D. The effect of the algal microbiome on industrial production of microalgae. J Microbial Biotechnol. 2018;11(5):806–18.

Ye J, Song Z, Wang L, Zhu J. Metagenomic analysis of microbiota structure evolution in phytoremediation of a swine lagoon wastewater. Bioresour Technol. 2016;219:439–44.

Paddock MB, Fernández-Bayo JD, VanderGheynst JS. The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production. Appl Microbiol Biotechnol. 2019;104(2):893–905.

Habe H, Sato Y, Aoyagi T, Inaba T, Hori T, Hamai T, et al. Design, application, and microbiome of sulfate-reducing bioreactors for treatment of mining-influenced water. Appl Microbiol Biotechnol. 2020;104(16):6893–903.

Ju F, Beck K, Yin X, Maccagnan A, McArdell CS, Singer HP, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME J. 2019;13(2):346–60.

Rezadehbashi M, Baldwin S. Core sulphate-reducing microorganisms in metal-removing semi-passive biochemical reactors and the co-occurrence of methanogens. Microorganisms. 2018;6(1):16.

Lee S-A, Ko S-R, Lee N, Lee J-W, Van Le V, Oh H-M, et al. Two-step microalgal (Coelastrella sp.) treatment of raw piggery wastewater resulting in higher lipid and triacylglycerol levels for possible production of higher-quality biodiesel. Bioresour Technol. 2021;332:125081.

Kim M, Kim D, Cho JM, Nam K, Lee H, Nayak M, et al. Hydrodynamic cavitation for bacterial disinfection and medium recycling for sustainable Ettlia sp. cultivation. J Environ Chem Eng. 2021;9:105411.

Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5(10):1571–9.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.

Valentini TD, Lucas SK, Binder KA, Cameron LC, Motl JA, Dunitz JM, et al. Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota. Nat Commun. 2020;11(1):1–11.

Gong J, Dong J, Liu X, Massana R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist. 2013;164(3):369–79.

Menhinick EF. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology. 1964;45(4):859–61.

Singh NK, Wood JM, Karouia F, Venkateswaran K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome. 2018;6:204.

Lee SA, Kim M, Esterhuizen M, Le VV, Kang M, Ko SR, et al. An acceleration of carotenoid production and growth of Haematococcus lacustris induced by host-microbiota network interaction. Microbiol Res. 2022;262:127097.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.

Shishido TK, Jokela J, Kolehmainen C-T, Fewer DP, Wahlsten M, Wang H, et al. Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proc Natl Acad Sci. 2015;112(44):13669–74.

Shannon P. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

Ngo TP, Bartie KL, Thompson KD, Verner-Jeffreys DW, Hoare R, Adams A. Genetic and serological diversity of Flavobacterium psychrophilum isolates from salmonids in United Kingdom. Vet Microbiol. 2017;201:216–24.

Pérez-Pascual D, Vendrell-Fernández S, Audrain B, Bernal-Bayard J, Patiño-Navarrete R, Petit V, et al. Gnotobiotic rainbow trout (Oncorhynchus mykiss) model reveals endogenous bacteria that protect against Flavobacterium columnare infection. PLoS Pathog. 2021;17(1):e1009302.

Rajamanickam K, Sudha SS, Francis M, Sowmya T, Rengaramanujam J, Sivalingam P, et al. Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2013;113:10–4.

Li H, Li J, Wan Q, Wang M, Zhao J, Li H, et al. Bioremediation mechanism of Monensin contaminated chicken manure by a combination of housefly larvae and Stenotrophomonas sp. DM-2 Environ Technol Innov. 2021;21:101269.

Sharma M, Khurana H, Singh DN, Negi RK. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential-A review. J Environ Manage. 2020;280:111744.

Lin C-Y, Nguyen M-LT, Lay C-H. Starch-containing textile wastewater treatment for biogas and microalgae biomass production. J Clean Prod. 2017;168:331–7.

Foladori P, Petrini S, Andreottola G. Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chem Eng J. 2018;345:507–16.

Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013;47(13):4294–302.

Fernández-Linares LC, Gutiérrez-Márquez A, Guerrero-Barajas C. Semi-continuous culture of a microalgal consortium in open ponds under greenhouse conditions using piggery wastewater effluent. Bioresour Technol Rep. 2020;12:100597.

Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16(5):263–76.

Baruah FK, Jain M, Lodha M, Grover RK. Blood stream infection by an emerging pathogen Oligella ureolytica in a cancer patient: case report and review of literature. Indian J Pathol Microbiol. 2014;57(1):141.

Pugliese A, Pacris B, Schoch PE, Cunha BA. Oligella urethralis urosepsis. Clin Infect Dis. 1993;17(6):1069–70.

Samarajeewa AD, Hammad A, Masson L, Khan I, Scroggins R, Beaudette L. Comparative assessment of next-generation sequencing, denaturing gradient gel electrophoresis, clonal restriction fragment length polymorphism and cloning-sequencing as methods for characterizing commercial microbial consortia. J Microbiol Methods. 2015;108:103–11.

Antal GM, Lukehart SA, Meheus AZ. The endemic treponematoses. Microbes Infect. 2002;4(1):83–94.

Bergogne-Berezin E, Towner K. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9(2):148.

Massé D, Gilbert Y, Topp E. Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure. Bioresour Technol. 2011;102(2):641–6.

Parladé E, Hom-Diaz A, Blánquez P, Martínez-Alonso M, Vicent T, Gaju N. Effect of cultivation conditions on β-estradiol removal in laboratory and pilot-plant photobioreactors by an algal-bacterial consortium treating urban wastewater. Water Res. 2018;137:86–96.

Chun S-J, Cui Y, Lee JJ, Choi I-C, Oh H-M, Ahn C-Y. Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. 2020;170:115326.

Beauruelle C, Le Bars H, Bocher S, Tandé D, Héry-Arnaud G. The brief case: Extragenitourinary location of Oligella urethralis. J Clin Microbiol. 2019;57(8):e01542–18.

Belkhou C, Tadeo RT, Bacigalupe R, Valles-Colomer M, Chaffron S, Joossens M, et al. Treponema peruense sp. nov., a commensal spirochaete isolated from human faeces. Int J Syst Evol Microbiol. 2021;71(10):005050.

Atabay HI, Waino M, Madsen M. Detection and diversity of various Arcobacter species in Danish poultry. Int J Food Microbiol. 2006;109(1-2):139–45.

Muneer S, Kim TH, Choi BC, Lee BS, Lee JH. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate–glutathione pathway to induce Fragaria×annasa as a hyperaccumulator. Redox Biol. 2014;2:91–8.

Wang Y, Ji D, Chen T, Li B, Zhang Z, Qin G, et al. Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit–pathogen interactions. Int J Mol Sci. 2019;20(12):2994.

Griffin AS, West SA, Buckling A. Cooperation and competition in pathogenic bacteria. Nature. 2004;430(7003):1024–7.