Influence of the size and concentration of soft-phase inclusion agglomerates on ceramic specimen strength

Physical Mesomechanics - Tập 19 - Trang 182-188 - 2016
A. I. Dmitriev1,2,3, S. P. Buyakova1,2,3, S. N. Kulkov1,2,3
1National Research Tomsk State University, Tomsk, Russia
2Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
3National Research Tomsk Polytechnic University, Tomsk, Russia

Tóm tắt

The paper is a theoretical study into the influence of the content and distribution of soft-phase inclusion agglomerates in the matrix of a ceramic composite specimen on its strength and deformation properties. The movable cellular automata method was used to simulate uniaxial compression of two-dimensional composite material specimens with an aspect ratio of 1:1. It is found that the strength and deformation properties of the generated composites decrease nonlinearly with the growing volume fraction of inclusions. The average size of inclusion agglomerates at the same volume fraction of the soft-phase particles slightly affects the strength and deformation properties of the simulated specimens. The obtained theoretical results can be used to develop new ceramic materials, such as composite ceramics with dimensions preserved at varying temperature.

Tài liệu tham khảo

Panin, V.E., Panin, A.V., Derevyagina, L.S., Kopylov, V.I., and Valiev, R.Z., Scale Levels of Plastic Flow and Mechanical Properties of Nanostructured Materials, Nanomaterials by Severe Plastic Deformation XXII, Zehetbauer, M. and Valiev, R.Z., Eds., Weinheim: Wiley-VCH, 2004, pp. 37–43. Callister, W.D. and Rethwisch, D.G., Materials Science and Engineering: An Introduction, New York: Wiley, 2013. Przybylski, W., Technology of Surface Plastic Forming, Moscow: Metallurgiya, 1991. Melnikov, A.G., Sablina, T.Yu., Savchenko, N.L., Sevostianova, I.N., and Kulkov, S.N., Properties of Plasma Chemical ZrO2-Based Nanocrystalline Powders, Fundament. Probl. Sovr. Materialoved., 2007, vol. 4, no. 2, pp. 102106. Sun, L., Sneller, A., and Kwon, P., ZrW2O8-Containing Composites with Near-Zero Coefficient of Thermal Expansion Fabricated by Various Methods: Comparison and Optimization, Compos. Sci. Technol., 2008, vol. 68, pp. 3425–3430. Yang, X., Xu, J., and Li, H., In Situ Synthesis of ZrO2/ ZrW2O8 Composites with Near-Zero Thermal Expansion, J. Am. Ceram. Soc., 2007, vol. 90(6), pp. 1953–1955. Buyakova, S.P. and Kulkov, S.N., Structure Formation in Porous Ceramics Sintered from Nanocrystalline Powders, Ogneupory Tekh. Keram., 2005, no. 11, pp. 6–11. Makarov, N.A., Composite Material in the Aluminum Oxide-Zirconium Dioxide System, Glass Ceram., 2007, vol. 64, no. 3-4, pp. 120–123. Geodakyan, D.A., Kostanyan, A.K., Geokchyan, O.K., and Geodakyan, K.D., Heat-Resistant Zirconia Compositions, Ogneupory Tekh. Keram., 2010, no. 6, pp. 11–15. Evans, J.S.O., Mary, T.A., Vogt, T., Subramanian, M.A., and Sleight, A.W., Negative Thermal Expansion in ZrW2O8 and HfW2O8, Chem. Mater., 1996, vol. 8(12), pp. 2809–2823. Evans, J.S.O., Negative Thermal Expansion Materials, J. Chem. Soc. Dalton Trans., 1999, pp. 3317–3326. Yang, X., Cheng, X., Yan, X., Yang, J., Fu, T., and Qiu, J., Synthesis of ZrO2/ZrW2O8 Composites with Low ThermalExpansion, Compos. Sci. Technol., 2007, vol. 67, pp. 1167–1171. Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Yu., Smolin, A.Yu., Shilko, E.V., Dmitriev, A.I., Blatnik, S., Spegel, M., and Zavsek, S., Movable Cellular Automata Method for Simulating Materials with Mesostructure, Theor. Appl. Fract. Mech., 2001, vol. 37, no. 13, pp. 311–334. Dmitriev, A.I., Kuznetsov, V.P., Nikonov, A.Yu., Smolin, I.Yu., and Psakhie, S.G., Modeling ofNanostructuring Burnishing on Different Scales, Phys. Mesomech., 2014, vol. 17, no. 4, pp. 243–249. Psakhie, S.G., Shilko, E.V., Smolin, A.Yu., Dimaki, A.V., Dmitriev, A.I., Konovalenko, Ig.S., Astafurov, S.V., and Zavsek, S., Approach to Simulation of Deformation and Fracture of Hierarchically Organized Heterogeneous Media, Including Contrast Media, Phys. Mesomech., 2011, vol. 14, no. 5-6, pp. 224–248. Dmitriev, A.I. and Osterle, W., Modelling the Sliding Behaviour of Tribofilms Forming During Automotive Braking: Impact of Loading Parameters and Property Range of Constituents, Tribol. Lett., 2014, vol. 53, pp. 337–351.